Chen, Hao und Gläser, Philipp und Hu, Xuanyu und Willner, Konrad und Oberst, Jürgen (2024) Deep Learning-Based Modeling of High-Resolution Lunar Topography Using Orbiter Imagery. IEEE International Geoscience and Remote Sensing Symposium, 2024-07-07 - 2024-07-12, Athens, Greece. doi: 10.1109/IGARSS53475.2024.10642089.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10642089
Kurzfassung
Fine topographic modeling of the lunar surface is vital for exploration missions and scientific applications. While there has been rapid development in Deep Learning (DL) methods that leverage single-view orbiter images to generate high-resolution Digital Terrain Models (DTMs), these approaches encounter challenges in accurately retrieving fine-scale terrains. Here, we propose a transformer-based DL method for the reconstruction of multi-scale terrain features. Moreover, the improved approach takes into account lunar elevation characteristics, with the goal of improving prediction accuracy, particularly for subtle features. Input images for evaluating the performance of the proposed method are obtained from the Narrow Angle Camera (NAC) onboard Lunar Reconnaissance Orbiter (LRO). We demonstrate that our method achieves enhanced accuracy and effectively captures fine-scale terrain features, such as small-scale craters and ejecta rays, exhibiting performance comparable to the Shape-From-Shading (SFS) method. These results suggest that our method is well-suited for many practical applications.
elib-URL des Eintrags: | https://elib.dlr.de/204733/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Deep Learning-Based Modeling of High-Resolution Lunar Topography Using Orbiter Imagery | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 7 Juli 2024 | ||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.1109/IGARSS53475.2024.10642089 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 6084-6087 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Shape Modelling, Deep learning, Moon, Lunar | ||||||||||||||||||||||||
Veranstaltungstitel: | IEEE International Geoscience and Remote Sensing Symposium | ||||||||||||||||||||||||
Veranstaltungsort: | Athens, Greece | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erforschung des Weltraums | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EW - Erforschung des Weltraums | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Exploration des Sonnensystems | ||||||||||||||||||||||||
Standort: | Berlin-Adlershof | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Planetenforschung > Planetengeodäsie | ||||||||||||||||||||||||
Hinterlegt von: | Willner, Dr Konrad | ||||||||||||||||||||||||
Hinterlegt am: | 20 Sep 2024 10:24 | ||||||||||||||||||||||||
Letzte Änderung: | 20 Sep 2024 10:24 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags