Thirunavukkarasu, Arunachalam und Helms, Domenik (2023) Using Network Architecture Search for Optimizing Tensor Compression. Springer International Publishing AG. The 7th International Embedded Systems Symposium, 2022-11-03 - 2022-11-04, Lippstadt, Germany. doi: 10.1007/978-3-031-34214-1_12.
PDF
4MB |
Kurzfassung
In this work we propose to use Network Architecture Search (NAS) for controlling the per layer parameters of a Tensor Compression (TC) algorithm using Tucker decomposition in order to optimize a given convolutional neural network for its parameter count and thus inference performance on embedded systems. TC enables a quick generation of the next instance in the NAS process, avoiding the need for a time consuming full training after each step. We show that this approach is more effcient than conventional NAS and can outperform all TC heuristics reported so far. Nevertheless it is still a very time consuming process, ending a good solution in the vast search space of layer-wise TC. We show that, it is possible to reduce the parameter size upto 85% for the cost of 0.1- 1% of Top-1 accuracy on our vision processing benchmarks. Further, it is shown that the compressed model occupies just 20% of the original memory size which is required for storing the entire uncompressed model, with an increase in the inference speed of upto 2.5 times without much loss in the performance indicating potential gains for embedded systems.
elib-URL des Eintrags: | https://elib.dlr.de/204672/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Using Network Architecture Search for Optimizing Tensor Compression | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 2023 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1007/978-3-031-34214-1_12 | ||||||||||||
Verlag: | Springer International Publishing AG | ||||||||||||
Name der Reihe: | IFIP Advances in Information and Communication Technology | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Tensor Compression · Embedded systems · Network Architecture Search · Tucker Decomposition · Convolutional Neural Network | ||||||||||||
Veranstaltungstitel: | The 7th International Embedded Systems Symposium | ||||||||||||
Veranstaltungsort: | Lippstadt, Germany | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 3 November 2022 | ||||||||||||
Veranstaltungsende: | 4 November 2022 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||
Standort: | Oldenburg | ||||||||||||
Institute & Einrichtungen: | Institut für Systems Engineering für zukünftige Mobilität > System Evolution and Operation | ||||||||||||
Hinterlegt von: | Thirunavukkarasu, Arunachalam | ||||||||||||
Hinterlegt am: | 28 Jun 2024 13:57 | ||||||||||||
Letzte Änderung: | 01 Jul 2024 07:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags