elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Investigation of a coupled optimization concept for heat pump cycles with simultaneous data-driven compressor design

Yoo, Jina (2024) Investigation of a coupled optimization concept for heat pump cycles with simultaneous data-driven compressor design. Masterarbeit, FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG.

[img] PDF - Nur DLR-intern zugänglich
6MB

Kurzfassung

Heat pumps are carbon-neutral devices that play a crucial role in decarbonizing heat generation processes and have become key technologies for achieving Net Zero Emission goals by 2050. This study investigates the optimization of heat pumps operating at temperatures exceeding 140°C by integrating data-driven component design and heat pump models, aiming to propose an effective approach to optimize heat pumps while simultaneously selecting the best compressor design. The research questions involve determining the effect of integrating the data-driven models into the process chain, assessing their potential to reduce computational time and deliver reliable results, as well as determining the optimal database size for training them. The study is structured into three parts: System level, component level, and integration level, each employing distinct tools for different model development. At the system level, the Brayton heat pump model is created using Modelon Impact. The component level focuses on constructing a data-driven model or artificial neural network model for designing compressors. The integration level combines all parts into a single system via Python and conducts system optimization. The findings reveal that involving a data-driven model in the process chain significantly reduces the computational time from 4.5 hours to 4 seconds for a single optimization run. This neural network model offers accurate pressure ratio results while the efficiency prediction needs to be improved. In addition, the increase in database size results in higher prediction accuracy for pressure ratio and efficiency. In terms of optimization algorithms, differential evolution is preferred, by achieving the heat pump design with the highest coefficient of performance (COP). In conclusion, this thesis offers valuable insights into the integration of simulation, machine learning, and optimization tools for heat pump design.

elib-URL des Eintrags:https://elib.dlr.de/204500/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Investigation of a coupled optimization concept for heat pump cycles with simultaneous data-driven compressor design
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Yoo, Jinajina.yoo (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:April 2024
Open Access:Nein
Seitenanzahl:60
Status:veröffentlicht
Stichwörter:Optimization, Neural Networks, Regression, Surrogate Models, Heat Pump Design
Institution:FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG
Abteilung:TECHNISCHE FAKULTÄT, DEPARTMENT INFORMATIK
HGF - Forschungsbereich:Energie
HGF - Programm:Materialien und Technologien für die Energiewende
HGF - Programmthema:Thermische Hochtemperaturtechnologien
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SP - Energiespeicher
DLR - Teilgebiet (Projekt, Vorhaben):E - Dekarbonisierte Industrieprozesse
Standort: Cottbus
Institute & Einrichtungen:Institut für CO2-arme Industrieprozesse > Simulation und Virtuelles Design
Institut für CO2-arme Industrieprozesse
Hinterlegt von: Gollasch, Jens Oliver
Hinterlegt am:11 Jun 2024 12:46
Letzte Änderung:13 Jun 2024 12:29

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.