Cavalagli, Chiara und Badia, Leonardo und Munari, Andrea (2024) Reinforcement Learning for Age of Information Aware Transmission Policies in Slotted ALOHA Channels. In: 19th International Symposium on Wireless Communication Systems, ISWCS 2024. IEEE ISWCS, 2024-07-17, Rio de Janeiro, Brazil. ISBN 9798350362510. ISSN 2154-0217. (im Druck)
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
We focus on remote monitoring applications, in which a large number of devices send time-stamped status updates over a wireless channel to a common receiver. An uncoordinated medium sharing policy based on ALOHA is considered, and the overall goal is to maintain an up-to-date perception at the receiver, captured via the average age of information (AoI) metric. In this setting, we propose and evaluate a simple reinforcement learning algorithm which is run independently at each node in a fully decentralized fashion. Leaning on a binary success/collision feedback distributed by the receiver, the solution adapts the access behavior of transmitters based on the current value of AoI. We compare the performance of the scheme to that of threshold ALOHA [1], a benchmark protocol that resorts to a central optimization of the access parameters. Interesing insights on the potential of reinforcement learning for AoI improvements in random access channels are derived.
elib-URL des Eintrags: | https://elib.dlr.de/204492/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Reinforcement Learning for Age of Information Aware Transmission Policies in Slotted ALOHA Channels | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Erschienen in: | 19th International Symposium on Wireless Communication Systems, ISWCS 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
ISSN: | 2154-0217 | ||||||||||||||||
ISBN: | 9798350362510 | ||||||||||||||||
Status: | im Druck | ||||||||||||||||
Stichwörter: | Age of information; random access; ALOHA; reinforcement learning | ||||||||||||||||
Veranstaltungstitel: | IEEE ISWCS | ||||||||||||||||
Veranstaltungsort: | Rio de Janeiro, Brazil | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsdatum: | 17 Juli 2024 | ||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Kommunikation, Navigation, Quantentechnologien | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R KNQ - Kommunikation, Navigation, Quantentechnologie | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Global Connectivity for People and Machines | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Satellitennetze | ||||||||||||||||
Hinterlegt von: | Munari, Dr. Andrea | ||||||||||||||||
Hinterlegt am: | 29 Mai 2024 13:33 | ||||||||||||||||
Letzte Änderung: | 13 Nov 2024 15:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags