elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Flood susceptibility mapping using remote sensing and geospatial data in West Africa

Montién Tique, Wilmer Fabián (2024) Flood susceptibility mapping using remote sensing and geospatial data in West Africa. Masterarbeit, Institute of Geography and Geology.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Floods in West Africa represent a challenging risk scenario that requires comprehensive action from stakeholders and the local community. To this end, precise and up-to-date data, alongside periodic hazard, susceptibility, and risk mapping, are crucial to understand flood disasters for decision-making. In particular, flood susceptibility maps quantify the likelihood of floods occurring in a spatial location based on topographical, geological, hydrographical, land cover, socioeconomic, urban, environmental, meteorological, and climatic flood-influencing factors. These maps support urban planning and disaster risk management. Thereby, remote sensing and Geographic Information Systems (GIS) contribute to the susceptibility analysis by providing inputs derived from satellite images, geodata, and tools to produce accurate flood susceptibility maps. Hence, this master thesis aims to obtain flood susceptibility maps in West Africa, specifically Nigeria, through open data, remote sensing, GIS, machine learning, and statistical approaches. First, four different Digital Elevation Models (DEMs) from different sources and four hydrological methods (D8, D-inf, Fd8, and Rho8) were combined and compared, and used to get the most applied topographic and hydrographic flood-influencing factors. At the same time, other factors derived from land cover, groundwater, soil, lakes, and coastline datasets were included. In total, twenty-three static flood-influencing factors were calculated at a spatial resolution of 30 meters, representing topographical, hydrographical, land cover, urban, and environmental characteristics of Nigeria. Secondly, preprocessing and feature selection were applied to the flood-influencing factors. Then, three different models were implemented to compare their performance. The selected models were Random Forest (RF), Binary Logistic Regression (LG), and Linear Discriminant Analysis (LDA); in this way, R and WhiteboxTools were used for the data preparation and modeling. As a result, a total of forty-eight flood susceptibility maps were calculated. The best map from each model was provided by the Global DEM (GLO30) from Copernicus and the D8 and Fd8 hydrological methods. Therefore, the GLO30/D8 RF, GLO30/Fd8 LG, and GLO30/Fd8 LDA maps were evaluated with reference data (flood events between September and October 2022) provided by the Deutsches Zentrum für Luft und Raumfahrt (DLR) and the Global Flood Monitoring (GFM). Consequently, the evaluation demonstrated a good performance of the proposed models. Lastly, the exposed population in 2020 was quantified along with the projected population in 2025 and 2030, where Anambra, Bayelsa, Borno, Delta, Rivers, Lagos, Jigawa, Kogi, Kebbi, and Sokoto are the most exposed to floods.

elib-URL des Eintrags:https://elib.dlr.de/204445/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Flood susceptibility mapping using remote sensing and geospatial data in West Africa
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Montién Tique, Wilmer FabiánJulius Maximilians Universität WürzburgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:30 April 2024
Open Access:Nein
Seitenanzahl:88
Status:veröffentlicht
Stichwörter:West Africa, Floods, Susceptibility
Institution:Institute of Geography and Geology
Abteilung:Department of Remote Sensing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung, R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum
Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Sapena Moll, Marta
Hinterlegt am:22 Jul 2024 11:17
Letzte Änderung:23 Jul 2024 10:02

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.