elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Optical design and bandgap engineering in ultrathin multiple quantum well solar cell featuring photonic nanocavity

Meddeb Dite Hasanet, Hosni und Gehrke, Kai und Vehse, Martin (2024) Optical design and bandgap engineering in ultrathin multiple quantum well solar cell featuring photonic nanocavity. Progress in Photovoltaics: Research and Applications. Wiley. doi: 10.1002/pip.3802. ISSN 1062-7995.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
5MB

Offizielle URL: https://onlinelibrary.wiley.com/doi/full/10.1002/pip.3802

Kurzfassung

Ultrathin solar cells are efficient and captivating devices with unique technological and scientific features in terms of minimal material consumption, fast fabrication processes, and good compatibility with semi-transparent applications. Such photovoltaic (PV) technologies can enable effective synergy between optical and electronic confinements with large tuning capabilities of all the optoelectronic characteristics. In this work, the implications of the optical design and the bandgap engineering in ultrathin hydrogenated amorphous Si/Ge multiple quantum well (MQW) solar cells featuring photonic nanocavity are analyzed based on experimental measurements and optoelectronic modelling. By changing the period thicknesses and the positions of QWs inside the deep-subwavelength nanophotonic resonator, the spatial and spectral distributions of the optical field and the local absorption are strongly affected. This leads to a modulation of the absorption resonance condition, the absorption edge and the resulting photocurrent outputs. Because of quantum confinement effect, the change of MQW configurations with different individual QW periods while keeping similar total thickness of about 20 nm alters both the bandgap energy and the band offset at the QW/barrier heterojunctions. This in turn controls the photovoltage as well as the carrier collection efficiency in solar cells. The highest open circuit voltage and fill factor values are achieved by employing MQW device configuration with 2.5 nm-thin QWs. A record efficiency above 5.5% is reached for such emerging ultrathin Si/Ge MQW solar cell technology using thinner QWs with sufficient number, because of the optimum trade-off between all the optoelectronic characteristic outputs. The presented design rules for opaque ultrathin solar cells with quantum-confined nanostructures integrated in a photonic nanocavity can be generalized for the engineering of relevant multifunctional semitransparent PV devices.

elib-URL des Eintrags:https://elib.dlr.de/204349/
Dokumentart:Zeitschriftenbeitrag
Titel:Optical design and bandgap engineering in ultrathin multiple quantum well solar cell featuring photonic nanocavity
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Meddeb Dite Hasanet, HosniHosni.Meddeb (at) dlr.dehttps://orcid.org/0000-0001-8939-7910NICHT SPEZIFIZIERT
Gehrke, KaiKai.Gehrke (at) dlr.dehttps://orcid.org/0000-0002-0591-8289NICHT SPEZIFIZIERT
Vehse, Martinmartin.vehse (at) dlr.dehttps://orcid.org/0000-0003-0578-6121NICHT SPEZIFIZIERT
Datum:9 April 2024
Erschienen in:Progress in Photovoltaics: Research and Applications
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1002/pip.3802
Herausgeber:
HerausgeberInstitution und/oder E-Mail-Adresse der HerausgeberHerausgeber-ORCID-iDORCID Put Code
Raffaelle, RyneRochester Institute of Technology rprsps (at) rit.eduNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Verlag:Wiley
Name der Reihe:SPECIAL ISSUE ARTICLE_ Selected in 40th EUPVSEC
ISSN:1062-7995
Status:veröffentlicht
Stichwörter:emerging PV technologies; ultrathin solar cell; bandgap engineering; nanophotonic design; optoelectronic modelling
HGF - Forschungsbereich:Energie
HGF - Programm:Energiesystemdesign
HGF - Programmthema:Digitalisierung und Systemtechnologie
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SY - Energiesystemtechnologie und -analyse
DLR - Teilgebiet (Projekt, Vorhaben):E - Energiesystemtechnologie
Standort: Oldenburg
Institute & Einrichtungen:Institut für Vernetzte Energiesysteme > Stadt- und Gebäudetechnologien
Hinterlegt von: Meddeb Dite Hasanet, Hosni
Hinterlegt am:03 Jun 2024 16:03
Letzte Änderung:12 Jun 2024 13:43

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.