elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Predicting Vessel Tracks in Waterways for Maritime Anomaly Detection

Minßen, Finn-Matthis und Klemm, Jannik und Steidel, Matthias und Niemi, Arto Turo Olavi (2024) Predicting Vessel Tracks in Waterways for Maritime Anomaly Detection. Transactions on Maritime Science, 13 (1). Faculty of Maritime Studies. doi: 10.7225/toms.v13.n01.002. ISSN 1848-3305.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://www.toms.com.hr/index.php/toms/article/view/725

Kurzfassung

Many approaches to vessel track prediction and anomaly detection rely only on a vessel’s positional data. This paper examines whether including tide and weather data into the track prediction model improves accuracy. We predict vessel tracks in waterways using a bi-directional Long Short-Term Memory (Bi-LSTM) approach and a transformer model. For this purpose, the boundaries of the Elbe and Weser river waterways are merged with vessel position data. Additionally, tide data, as well as weather information, will be used to train the model. To ascertain whether this additional data improves the accuracy, the models have been trained with and without tide and weather data and evaluated against each other. Furthermore, we have investigate whether the predictions can be used for detecting anomalous vessel behaviour. Our results show that the lowest average error and the best RMSE, MSE, and MAE values have been achieved with the Bi-LSTM, where no tide and weather data have been used for training. We have also found that the transformer model is more accurate than a linear prediction model, which is used as a baseline. In addition, we have shown that deviations between predicted and real tracks can be labelled as anomalous. The results have shown that including tide and weather data does not necessarily improve the predictions. Adding data with a low information content to train a machine learning model may introduce noise or bias into the model. We believe that this phenomenon explains our results. Thereby this paper shows that simply adding this data to train the track prediction model may not enhance the overall accuracy.

elib-URL des Eintrags:https://elib.dlr.de/203909/
Dokumentart:Zeitschriftenbeitrag
Titel:Predicting Vessel Tracks in Waterways for Maritime Anomaly Detection
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Minßen, Finn-MatthisNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Klemm, JannikJannik.Klemm (at) dlr.dehttps://orcid.org/0009-0009-2031-6137159661127
Steidel, Matthiasmatthias.steidel (at) dlr.dehttps://orcid.org/0000-0002-2912-7625159661128
Niemi, Arto Turo OlaviArto.Niemi (at) dlr.dehttps://orcid.org/0000-0001-6307-9826NICHT SPEZIFIZIERT
Datum:20 April 2024
Erschienen in:Transactions on Maritime Science
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:13
DOI:10.7225/toms.v13.n01.002
Verlag:Faculty of Maritime Studies
ISSN:1848-3305
Status:veröffentlicht
Stichwörter:Vessel track prediction, Bidirectional LSTM, Transformer model, AIS data, Tide data, Weather data, Anomaly detection
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:keine Zuordnung
DLR - Forschungsgebiet:keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):keine Zuordnung
Standort: Bremerhaven
Institute & Einrichtungen:Institut für den Schutz maritimer Infrastrukturen > Resilienz Maritimer Systeme
Institut für Systems Engineering für zukünftige Mobilität > Application and Evaluation
Hinterlegt von: Niemi, Arto Turo Olavi
Hinterlegt am:15 Mai 2024 16:09
Letzte Änderung:15 Mai 2024 16:09

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.