Efremenko, Dmitry (2021) Discrete Ordinate Radiative Transfer Model With the Neural Network Based Eigenvalue Solver: Proof Of Concept. Light and Engineering, 29 (01), Seiten 56-62. Znack Publishing House. doi: 10.33383/2020-075. ISSN 0236-2945.
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
324kB |
Offizielle URL: https://dx.doi.org/10.33383/2020-075
Kurzfassung
Artificial neural networks are attracting increasing attention in various applications. They can be used as ‘universal approximations’, which substitute computationally expensive algorithms by relatively simple sequences of functions, which simulate a reaction of a set of neurons to the incoming signal. In particular, neural networks have proved to be efficient for parameterization of the computationally expensive radiative transfer models (RTMs) in atmospheric remote sensing. Although a direct substitution of RTMs by neural networks can lead to the multiple performance enhancements, such an approach has certain drawbacks, such as loss of generality, robustness issues, etc. In this regard, the neural network is usually trained for a specific application, predefined atmospheric scenarios and a given spectrometer. In this paper a new concept of neural-network based RTMs is examined, in which the neural network substitutes not the whole RTM but rather a part of it (the eigenvalue solver), thereby reducing the computational time while maintaining its generality. The explicit dependencies on geometry of observation and optical thickness of the medium are excluded from training. It is shown that although the speedup factor due to this approach is modest (around 3 times against 103 speed up factor of other approaches reported in recent papers), the resulting neural network is flexible and easy to train. It can be used for arbitrary number of atmospheric layers. Moreover, this approach can be used in conjunction with any RTMs based on the discrete ordinate method. The neural network is applied for simulations of the radiances at the top of the atmosphere in the Huggins band.
elib-URL des Eintrags: | https://elib.dlr.de/203517/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | Discrete Ordinate Radiative Transfer Model With the Neural Network Based Eigenvalue Solver: Proof Of Concept | ||||||||
Autoren: |
| ||||||||
Datum: | 2021 | ||||||||
Erschienen in: | Light and Engineering | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
Band: | 29 | ||||||||
DOI: | 10.33383/2020-075 | ||||||||
Seitenbereich: | Seiten 56-62 | ||||||||
Verlag: | Znack Publishing House | ||||||||
ISSN: | 0236-2945 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | radiative transfer, ∙machine learning, discrete ordinates | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Spektroskopische Verfahren der Atmosphäre | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||
Hinterlegt von: | Efremenko, Dr Dmitry | ||||||||
Hinterlegt am: | 09 Apr 2024 09:52 | ||||||||
Letzte Änderung: | 17 Apr 2024 19:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags