elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Discrete Ordinate Radiative Transfer Model With the Neural Network Based Eigenvalue Solver: Proof Of Concept

Efremenko, Dmitry (2021) Discrete Ordinate Radiative Transfer Model With the Neural Network Based Eigenvalue Solver: Proof Of Concept. Light and Engineering, 29 (01), Seiten 56-62. Znack Publishing House. doi: 10.33383/2020-075. ISSN 0236-2945.

[img] PDF - Nur DLR-intern zugänglich - Verlagsversion (veröffentlichte Fassung)
324kB

Offizielle URL: https://dx.doi.org/10.33383/2020-075

Kurzfassung

Artificial neural networks are attracting increasing attention in various applications. They can be used as ‘universal approximations’, which substitute computationally expensive algorithms by relatively simple sequences of functions, which simulate a reaction of a set of neurons to the incoming signal. In particular, neural networks have proved to be efficient for parameterization of the computationally expensive radiative transfer models (RTMs) in atmospheric remote sensing. Although a direct substitution of RTMs by neural networks can lead to the multiple performance enhancements, such an approach has certain drawbacks, such as loss of generality, robustness issues, etc. In this regard, the neural network is usually trained for a specific application, predefined atmospheric scenarios and a given spectrometer. In this paper a new concept of neural-network based RTMs is examined, in which the neural network substitutes not the whole RTM but rather a part of it (the eigenvalue solver), thereby reducing the computational time while maintaining its generality. The explicit dependencies on geometry of observation and optical thickness of the medium are excluded from training. It is shown that although the speedup factor due to this approach is modest (around 3 times against 103 speed up factor of other approaches reported in recent papers), the resulting neural network is flexible and easy to train. It can be used for arbitrary number of atmospheric layers. Moreover, this approach can be used in conjunction with any RTMs based on the discrete ordinate method. The neural network is applied for simulations of the radiances at the top of the atmosphere in the Huggins band.

elib-URL des Eintrags:https://elib.dlr.de/203517/
Dokumentart:Zeitschriftenbeitrag
Titel:Discrete Ordinate Radiative Transfer Model With the Neural Network Based Eigenvalue Solver: Proof Of Concept
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Efremenko, DmitryDmitry.Efremenko (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2021
Erschienen in:Light and Engineering
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:29
DOI:10.33383/2020-075
Seitenbereich:Seiten 56-62
Verlag:Znack Publishing House
ISSN:0236-2945
Status:veröffentlicht
Stichwörter:radiative transfer, ∙machine learning, discrete ordinates
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Spektroskopische Verfahren der Atmosphäre
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Atmosphärenprozessoren
Hinterlegt von: Efremenko, Dr Dmitry
Hinterlegt am:09 Apr 2024 09:52
Letzte Änderung:17 Apr 2024 19:06

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.