Chen, Sujin und Efremenko, Dmitry und Zhang, Zhiyuan und Meng, Lingkui (2023) In-Terrestrial Aquaculture Fields Mapping from High Resolution Remote Sensing Images. Light and Engineering (05-202), Seiten 135-142. Znack Publishing House. doi: 10.33383/2023-009. ISSN 0236-2945.
PDF
- Nur DLR-intern zugänglich
- Postprintversion (akzeptierte Manuskriptversion)
825kB |
Offizielle URL: https://dx.doi.org/10.33383/2023-009
Kurzfassung
Convolution neural networks are widely used for image processing in remote sensing. Aquacultures have an important role in food security and hence should be monitored. In this paper, a novel lightweight neural network for in-terrestrial aquaculture field retrieval from high-resolution remote sensing images is proposed. The structure of this pond segmentation network is based on the UNet architecture, providing higher training speed. Experiments are performed on Gaofen satellite datasets in Shanghai, China. The proposed network detects the in-land aquaculture ponds in a shorter time than state-of-the-art neural network-based models and reaches an overall accuracy of about 90%
elib-URL des Eintrags: | https://elib.dlr.de/203516/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | In-Terrestrial Aquaculture Fields Mapping from High Resolution Remote Sensing Images | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 26 Dezember 2023 | ||||||||||||||||||||
Erschienen in: | Light and Engineering | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.33383/2023-009 | ||||||||||||||||||||
Seitenbereich: | Seiten 135-142 | ||||||||||||||||||||
Verlag: | Znack Publishing House | ||||||||||||||||||||
ISSN: | 0236-2945 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | aquaculture, remote sensing (RS), convolutional neural networks (CNNs), deep learning (DL), GF-1 | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Atmosphärenprozessoren | ||||||||||||||||||||
Hinterlegt von: | Efremenko, Dr Dmitry | ||||||||||||||||||||
Hinterlegt am: | 09 Apr 2024 09:51 | ||||||||||||||||||||
Letzte Änderung: | 11 Nov 2024 13:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags