elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Quantifying Uncertainty in Slum Detection: Advancing Transfer Learning With Limited Data in Noisy Urban Environments

Stark, Thomas und Wurm, Michael und Zhu, Xiao Xiang und Taubenböck, Hannes (2024) Quantifying Uncertainty in Slum Detection: Advancing Transfer Learning With Limited Data in Noisy Urban Environments. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Seiten 4552-4565. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2024.3359636. ISSN 1939-1404.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
25MB

Offizielle URL: https://ieeexplore.ieee.org/document/10416343

Kurzfassung

In the intricate landscape of mapping urban slum dynamics, the significance of robust and efficient techniques is often underestimated and remains absent in many studies. This not only hampers the comprehensiveness of research but also undermines potential solutions that could be pivotal for addressing the complex challenges faced by these settlements. With this ethos in mind, we prioritize efficient methods to detect the complex urban morphologies of slum settlements. Leveraging transfer learning with minimal samples and estimating the probability of predictions for slum settlements, we uncover previously obscured patterns in urban structures. By using Monte Carlo dropout, we not only enhance classification performance in noisy datasets and ambiguous feature spaces but also gauge the uncertainty of our predictions. This offers deeper insights into the model's confidence in distinguishing slums, especially in scenarios where slums share characteristics with formal areas. Despite the inherent complexities, our custom CNN STnet stands out, delivering performance on par with renowned models like ResNet50 and Xception but with notably superior efficiency—faster training and inference, particularly with limited training samples. Combining Monte Carlo dropout, class-weighted loss function, and class-balanced transfer learning, we offer an efficient method to tackle the challenging task of classifying intricate urban patterns amidst noisy datasets. Our approach not only enhances artificial intelligence model training in noisy datasets but also advances our comprehension of slum dynamics, especially as these uncertainties shed light on the intricate intraurban variabilities of slum settlements.

elib-URL des Eintrags:https://elib.dlr.de/202921/
Dokumentart:Zeitschriftenbeitrag
Titel:Quantifying Uncertainty in Slum Detection: Advancing Transfer Learning With Limited Data in Noisy Urban Environments
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Stark, ThomasThomas.Stark (at) dlr.dehttps://orcid.org/0000-0002-6166-7541NICHT SPEZIFIZIERT
Wurm, Michaelmichael.wurm (at) dlr.dehttps://orcid.org/0000-0001-5967-1894NICHT SPEZIFIZIERT
Zhu, Xiao XiangTUMNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Taubenböck, HannesHannes.Taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Datum:29 Januar 2024
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/JSTARS.2024.3359636
Seitenbereich:Seiten 4552-4565
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:Artificial intelligence , Remote sensing , Urban areas , Training , Noise measurement , Uncertainty , Task analysis
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Stark, Thomas
Hinterlegt am:19 Mär 2024 08:16
Letzte Änderung:18 Apr 2024 12:38

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.