elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A machine learning framework for modeling the associations between various environmental features and health

Nikolaou, Nikolaos und Cea, Donatella und Valizadeh, Mahyar und Staab, Jeroen und Dallavalle, Marco und Piraud, M und Peters, A. und Schneider, Alexandra und Taubenböck, Hannes und Wolf, Kathrin (2024) A machine learning framework for modeling the associations between various environmental features and health. 5th ISEE Europe Young and Early Career Researchers Conference, 2024-06-05 - 2024-06-07, Rennes.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Abstract: Introduction: Human health has been associated with the exposure to several environmental variables as well as socio-economic and neighborhood settings. Yet, their interplay is not adequately analyzed and consequently not well understood. We aimed to build a machine learning (ML) pipeline, able to sufficiently identify the driving environmental, socio-economic and individual factors for cardiovascular health. Methods: For our use case, we included midterm data from the baseline examination of the largest German population-based cohort study NAKO conducted between 2014-19 in 18 study centers. We assigned environmental exposures (e.g. air pollution, air temperature, greenness) and neighborhood factors (e.g. urbanization) based on the participants’ residential addresses. We compared traditional regression approaches (Linear Regression, Elastic Net) with multiple ML algorithms, e.g. neighbor-based methods (K-Nearest Neighbour), Statistical Learning (Support Vector Machine), Ensemble Learning (Random Forest, XGBoost) and Neural Networks to identify the main risk factors for hypertension. Results: Of 101,601 participants included in our analysis, 45% were classified as hypertensive. Most models performed well and comparable with an accuracy ranging from 0.68 (K-Nearest Neighbour) to 0.73 (Support Vector Machine) in our test set. The different approaches identified similar factors as the main drivers for hypertension with highest feature importance for individual characteristics (age, Body Mass Index, sex) followed by environmental (non-optimal temperature, air pollution) and individual socio-economic (income, education) factors. Further neighborhood socio-economic factors (e.g. deprivation, household income) are currently assigned and will be incorporated in the next runs. Discussion: The ML pipeline shall be openly accessible soon for use in epidemiological analysis, specifically with binary health outcomes, but we also plan to incorporate continuous outcomes.

elib-URL des Eintrags:https://elib.dlr.de/202338/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A machine learning framework for modeling the associations between various environmental features and health
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Nikolaou, NikolaosInstitute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Cea, DonatellaInstitute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Valizadeh, MahyarInstitute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Staab, JeroenJeroen.Staab (at) dlr.dehttps://orcid.org/0000-0002-7342-4440165145810
Dallavalle, MarcoInstitute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Piraud, MHelmholtz AI, Helmholtz Munich, German Research Center for Environmental Health, Neuherberg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Peters, A.Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schneider, AlexandraInstitute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Taubenböck, HannesHannes.Taubenboeck (at) dlr.dehttps://orcid.org/0000-0003-4360-9126NICHT SPEZIFIZIERT
Wolf, KathrinInstitute of Epidemiology, Helmholtz Zentrum München-German Research Centre for Environmental Health, Ingolstädter Landstrasse 1, 85764, Neuherberg, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Environment, exposure, health, machine learning
Veranstaltungstitel:5th ISEE Europe Young and Early Career Researchers Conference
Veranstaltungsort:Rennes
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:5 Juni 2024
Veranstaltungsende:7 Juni 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren, R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Staab, Jeroen
Hinterlegt am:08 Aug 2024 10:58
Letzte Änderung:08 Aug 2024 10:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.