Lualdi, Pietro und Sturm, Ralf (2023) Adaptive Sampling Strategies for Crashworthniess Applications. ASCS Simpulse Day - AI-assisted Crash Simulation and Optimization, 2023-06-13, Online Konferenz.
PDF
2MB |
Kurzfassung
In the context of surrogate metamodeling for crashworthiness applications, the implementation of adaptive sampling strategies holds great potential for overcoming the challenge of setting the optimal number of samples a priori. These adaptive strategies offer a significant advantage by avoiding the common pitfalls of underand oversampling, making them attractive for expensive-to-evaluate functions such as those commonly encountered in crashworthiness applications. Despite their potential, most current research in this area relies predominantly on static sampling strategies. Recognizing this gap, our work explores the adaptation of innovative adaptive sampling methods specifically tailored to the needs of crashworthiness applications. In this context, we describe the Multi-Query Cross-Validation Voronoi (MQCVVor) method. This approach extends the traditional CVVor technique by integrating parallel processing, thus improving the efficiency and accuracy of surrogate models, especially for small scale multi-response systems. Our method demonstrates a significant improvement over conventional static Latin Hypercube Design (LHD) in terms of convergence speed and robustness. In addition to these results, we briefly discuss the potential limitations of adaptive sampling strategies and lay the groundwork for future research aimed at refining these techniques for more complex scenarios.
elib-URL des Eintrags: | https://elib.dlr.de/202106/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Adaptive Sampling Strategies for Crashworthniess Applications | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 13 Juni 2023 | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Nein | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Crash, Optimization, DOI, Design of experiments | ||||||||||||
Veranstaltungstitel: | ASCS Simpulse Day - AI-assisted Crash Simulation and Optimization | ||||||||||||
Veranstaltungsort: | Online Konferenz | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsdatum: | 13 Juni 2023 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - FFAE - Fahrzeugkonzepte, Fahrzeugstruktur, Antriebsstrang und Energiemanagement | ||||||||||||
Standort: | Stuttgart | ||||||||||||
Institute & Einrichtungen: | Institut für Fahrzeugkonzepte > Fahrzeugarchitekturen und Leichtbaukonzepte | ||||||||||||
Hinterlegt von: | Sturm, Ralf | ||||||||||||
Hinterlegt am: | 19 Jan 2024 14:06 | ||||||||||||
Letzte Änderung: | 24 Apr 2024 21:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags