Pargmann, Max und Ebert, Jan und Kesselheim, Stefan und Maldonado Quinto, Daniel und Pitz-Paal, Robert (2022) In Situ Enhancement of Heliostat Calibration Using Differentiable Ray Tracing and Artificial Intelligence. In: 28th International Conference on Concentrating Solar Power and Chemical Energy Systems (TIB Open Publishing). TIB Open Publishing. SolarPaces 2022, 2022-09-26 - 2022-09-30, Albuquerque, USA. doi: 10.52825/solarpaces.v1i.642. ISSN 2751-9899.
PDF
444kB |
Offizielle URL: https://www.tib-op.org/ojs/index.php/solarpaces/article/view/642
Kurzfassung
The camera target method is the most commonly used calibration method for heliostats at solar tower power plants to minimize their sun tracking errors. In this method, individual heliostats are moved to a white surface and their deviation from the targeted position is measured. A regression is used to calculate errors in a geometry model from the tabular data obtained in this way. For modern aim point strategies, or simply heliostats in the rearmost end of the field, extremely high accuracies are needed, which can only be achieved by many degrees of freedom in the geometry model. The problem here is that the camera target method produces only a very small data set per heliostat, which limits the number of free variables and thus the accuracy. In this work, we extend existing ray tracing methods for solar towers with a differentiable description, allowing for the first time a data-driven optimization of object parameters within the ray tracing environment. Therefore, the heliostat calibration can take place directly within the ray tracing environment. Thus, the image data acquired during the measurement can be processed directly and more information about the orientation of the heliostat can be obtained. Within a simple example we show the advantages of the method, which converges faster and corrects errors that could not be considered before. Without any disadvantages or additional costs, the state-of-the-art calibration method can be improved.
elib-URL des Eintrags: | https://elib.dlr.de/202080/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | In Situ Enhancement of Heliostat Calibration Using Differentiable Ray Tracing and Artificial Intelligence | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2022 | ||||||||||||||||||||||||
Erschienen in: | 28th International Conference on Concentrating Solar Power and Chemical Energy Systems (TIB Open Publishing) | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.52825/solarpaces.v1i.642 | ||||||||||||||||||||||||
Verlag: | TIB Open Publishing | ||||||||||||||||||||||||
Name der Reihe: | SolarPACES 2022 Conference Proceedings | ||||||||||||||||||||||||
ISSN: | 2751-9899 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Heliostat Calibration, Artificial Intelligence, Differentiable Raytracing | ||||||||||||||||||||||||
Veranstaltungstitel: | SolarPaces 2022 | ||||||||||||||||||||||||
Veranstaltungsort: | Albuquerque, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 26 September 2022 | ||||||||||||||||||||||||
Veranstaltungsende: | 30 September 2022 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||
HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Intelligenter Betrieb | ||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Solarforschung > Solare Kraftwerktechnik | ||||||||||||||||||||||||
Hinterlegt von: | Pargmann, Max | ||||||||||||||||||||||||
Hinterlegt am: | 25 Jan 2024 13:28 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags