Fabel, Yann und Schnaus, Dominik und Nouri, Bijan und Wilbert, Stefan und Blum, Niklas und Zarzalejo, L. F. und Pitz-Paal, Robert (2023) Nowcasting systems for irradiance ramp event detection. 29th SolarPACES Conference, 2023-10-10 - 2023-10-13, Sydney.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
For the operation of a CSP plant, short-term variability of incoming solar irradiance due to passing clouds can be challenging. Scattered cloud conditions, in particular, result in rapidly and continuously changing direct normal irradiance (DNI) distributions across the solar field, which impede optimal plant control. Therefore, the anticipation of such ramp events is crucial for optimized and fully automated control approaches. While recent works based on data-driven methods and hybridization have shown significant improvements in standard forecasting metrics, ramp event detection has often been neglected. In this work we refer to a simple definition for ramp event detection based on a predefined threshold value of change rate in DNI. We present the validation results of a state-of-the-art hybrid nowcasting system, combining physics-based and data-driven nowcasts and a novel generative deep learning approach to detect ramp events. The results confirm that data-driven and hybrid models optimzed on reducing RMSE do not work well to predict ramp events whereas the novel generative model shows good results in anticipating such ramp events.
elib-URL des Eintrags: | https://elib.dlr.de/201939/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||||||
Titel: | Nowcasting systems for irradiance ramp event detection | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 12 Oktober 2023 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Solar Forecasting, Solar Nowcasting, Ramp Event Detection, Generative Model, Machine Learning, Deep Learning | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | 29th SolarPACES Conference | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Sydney | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 10 Oktober 2023 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 13 Oktober 2023 | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Condition Monitoring | ||||||||||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Solarforschung > Qualifizierung | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Fabel, Yann | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 26 Feb 2024 13:15 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags