Kupriyanov, Alexey und Reis, Arthur und Schilling, Manuel und Müller, Vitali und Müller, Jürgen (2024) Benefit of enhanced electrostatic and optical accelerometry for future gravimetry missions. Advances in Space Research, 73 (6), Seiten 3345-3362. Elsevier. doi: 10.1016/j.asr.2023.12.067. ISSN 0273-1177.
PDF
- Nur DLR-intern zugänglich
- Preprintversion (eingereichte Entwurfsversion)
8MB |
Offizielle URL: https://dx.doi.org/10.1016/j.asr.2023.12.067
Kurzfassung
Twenty years of gravity observations from various satellite missions have provided unique data about mass redistribution processes in the Earth system, such as melting of Greenland's ice shields, sea level changes, ground and underground water depletion, droughts, floods, etc. The ongoing climate change underlines the urgent need to continue this kind of observations with future gravimetry missions using enhanced concepts and sensors. This paper studies the benefit of enhanced electrostatic and novel optical accelerometers and gradiometers for future gravimetry missions. One of the limiting factors in the current space gravimetry missions is the drift of the Electrostatic Accelerometers (EA) which dominates the error contribution at low frequencies (<1mHz). This study focuses on the modeling of enhanced EAs with laser-interferometric readout, so-called optical accelerometers, and on evaluating their performance for gravity field recovery in future satellite missions. In this paper, we simulate gravimetry missions in multiple scopes, applying various software modules for satellite dynamics integration, accelerometer (ACC) and gradiometer simulation and gravity field recovery. The total noise budgets of the modeled enhanced electrostatic and optical ACCs show a similar sensitivity as the ACC concepts from other research groups. Parametrization w.r.t. the weight of the test mass (TM) of ACCs and the gap between the TM and the surrounding electrode housing confirmed the fact known from previous results that an ACC with a heavier TM and a larger gap will perform better. Our results suggest that the anticipated gain of novel ACCs might at some point be potentially limited by noise from the inter-satellite laser ranging interferometry. In order to present the advantage of the novel sensors, time-variable background models and associated aliasing errors were not considered in our simulations. The utilization of enhanced EAs and optical ACCs shows a significant improvement of accuracy compared to the currently used GRACE-like EA. In addition, their benefit in double satellite pairs in a so-called Bender constellation as well as in the combination of low-low satellite-to-satellite tracking with cross-track gradiometry has been investigated.
elib-URL des Eintrags: | https://elib.dlr.de/201811/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Benefit of enhanced electrostatic and optical accelerometry for future gravimetry missions | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 3 Januar 2024 | ||||||||||||||||||||||||
Erschienen in: | Advances in Space Research | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 73 | ||||||||||||||||||||||||
DOI: | 10.1016/j.asr.2023.12.067 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 3345-3362 | ||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||
ISSN: | 0273-1177 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Schwerefeld, Beschleunigungsmesser | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Kommunikation, Navigation, Quantentechnologien | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R KNQ - Kommunikation, Navigation, Quantentechnologie | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Inertial Sensing for Space Applications | ||||||||||||||||||||||||
Standort: | Hannover | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Satellitengeodäsie und Inertialsensorik > Satellitengeodäsie und geodätische Modellierung | ||||||||||||||||||||||||
Hinterlegt von: | Schilling, Manuel | ||||||||||||||||||||||||
Hinterlegt am: | 26 Feb 2024 09:37 | ||||||||||||||||||||||||
Letzte Änderung: | 11 Nov 2024 13:54 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags