elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

STCD-EffV2T Unet: Semi Transfer Learning EfficientNetV2 T-Unet Network for Urban/Land Cover Change Detection Using Sentinel-2 Satellite Images

Gomroki, Masoomeh und Hasanlou, Mahdi und Reinartz, Peter (2023) STCD-EffV2T Unet: Semi Transfer Learning EfficientNetV2 T-Unet Network for Urban/Land Cover Change Detection Using Sentinel-2 Satellite Images. Remote Sensing, 15 (5), Seiten 1-23. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs15051232. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
21MB

Kurzfassung

Change detection in urban areas can be helpful for urban resource management and smart city planning. The effects of human activities on the environment and ground have gained momentum over the past decades, causing remote sensing data sources analysis (such as satellite images) to become an option for swift change detection in the environment and urban areas. We proposed a semi-transfer learning method of EfficientNetV2 T-Unet (EffV2 T-Unet) that combines the effectiveness of composite scaled EfficientNetV2 T as the first path or encoder for feature extraction and convolutional layers of Unet as the second path or decoder for reconstructing the binary change map. In the encoder path, we use EfficientNetV2 T, which was trained by the ImageNet dataset. In this research, we employ two datasets to evaluate the performance of our proposed method for binary change detection. The first dataset is Sentinel-2 satellite images which were captured in 2017 and 2021 in urban areas of northern Iran. The second one is the Onera Satellite Change Detection dataset (OSCD). The performance of the proposed method is compared with YoloX-Unet families, ResNest-Unet families, and other well-known methods. The results demonstrated our proposed method’s effectiveness compared to other methods. The final change map reached an overall accuracy of 97.66%.

elib-URL des Eintrags:https://elib.dlr.de/201733/
Dokumentart:Zeitschriftenbeitrag
Titel:STCD-EffV2T Unet: Semi Transfer Learning EfficientNetV2 T-Unet Network for Urban/Land Cover Change Detection Using Sentinel-2 Satellite Images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gomroki, MasoomehUniversity of TehranNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hasanlou, MahdiUniversity of TehranNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reinartz, Peterpeter.reinartz (at) dlr.dehttps://orcid.org/0000-0002-8122-1475NICHT SPEZIFIZIERT
Datum:23 Februar 2023
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:15
DOI:10.3390/rs15051232
Seitenbereich:Seiten 1-23
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:change detection; deep learning; EffIcientNetV2 T-Unet; semi transfer learning; Senteinel-2
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Reinartz, Prof. Dr.. Peter
Hinterlegt am:09 Jan 2024 15:30
Letzte Änderung:10 Jan 2024 11:52

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.