elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Object Height Estimation on Monoscopic Satellite Images Using Deep Learning

Gültekin, Furkan (2023) Object Height Estimation on Monoscopic Satellite Images Using Deep Learning. Projektarbeit, Middle East Technical University (METU), Turkey.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Conventional methodologies for deriving 3D information from satellite optical images often rely on intricate algorithms requiring substantial human supervision, numerous external parameters, and the acquisition of multiple images captured from disparate perspectives. This study aims to eliminate the need for manual parameter tuning and multiple image acquisition and completely automate the extraction of 3D object information from monoscopic satellite imagery by leveraging advanced deep learning algorithms. The Fused Height Estimation (Fused-HE) deep network model, which leverages the inherent characteristics of satellite imagery, is proposed within this scope. The model, featuring dual encoders, processes monoscopic satellite image inputs individually through the convolutional encoder for local feature extraction within neighboring pixels and the vision transformers encoder for global feature extraction using the relationships between objects in the image. The distinct feature outputs from the two encoders are concatenated in feature fusion blocks. Then, fused features are passed to the decoder blocks, and the height head produces the predicted heights. The proposed fused network is further improved by introducing an additional segmentation head to the model to assign height values to the correct pixel, and this model is named the Fused Segmentation Height Estimation (FusedSeg-HE). Comprehensive evaluations of individual models in the literature and the proposed fused networks demonstrate the proposed models provide both local and global feature extraction, reduce root mean squared error by approximately 5%-13%, and increase accuracy by 4%-9% in delta threshold according to the metric results

elib-URL des Eintrags:https://elib.dlr.de/201611/
Dokumentart:Hochschulschrift (Projektarbeit)
Titel:Object Height Estimation on Monoscopic Satellite Images Using Deep Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Gültekin, Furkanfege.gul (at) gmail.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2023
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenanzahl:112
Status:veröffentlicht
Stichwörter:Satellite Imagery, Height Estimation, Deep Learning
Institution:Middle East Technical University (METU), Turkey
Abteilung:Geodesy and Geographic Information Technology
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Straßenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V ST Straßenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Bahmanyar, Gholamreza
Hinterlegt am:22 Dez 2023 15:37
Letzte Änderung:18 Jan 2024 09:46

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.