Ravi, Pavithra und Zollo, Andrea und Fiedler, Hauke (2023) AI for Satellite Collision Avoidance – Go/No Go Decision-Making. 2nd International Orbital Debris Conference, 2023-12-04 - 2023-12-07, Sugar Land, Texas, USA.
PDF
740kB | |
PDF
1MB |
Kurzfassung
The proliferation of manmade objects in orbit for commercial, defense, and research purposes has resulted in frequent collision alerts. While much of the conjunction assessment and collision avoidance pipeline is automated, the decision on whether or not to carry out an avoidance maneuver is typically left to satellite operators. This work explores the potential of automating this go/no go decision using artificial intelligence (AI). A set of high-risk Conjunction Data Messages (CDMs) pertaining to 200 events is provided to analysts who are tasked with manually classifying them with a go/no go for maneuver. These events have a probability of collision (PoC) close to the critical threshold of 1E-4, treading the line between a typical go and no go decision. The classification results from the analysts are used as training data for AI models. Feature engineering and hyperparameter optimization is done to ensure the models are well equipped to learn from this data. The models’ abilities to identify relevant patterns from the CDMs and correctly classify unseen CDMs into the two classes is assessed. This work discusses the characteristics and processing of the CDM population used, the results from the developed models, and the insights gained on the practicability of applying AI to decision-making in this context.
elib-URL des Eintrags: | https://elib.dlr.de/201552/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||
Titel: | AI for Satellite Collision Avoidance – Go/No Go Decision-Making | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | November 2023 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Machine Learning, Long Short-Term Memory, K-Nearest Neighbors, Support Vector Machine, Time Series Classification, Collision Avoidance, Conjunction Assessment, Conjunction Data Messages | ||||||||||||||||
Veranstaltungstitel: | 2nd International Orbital Debris Conference | ||||||||||||||||
Veranstaltungsort: | Sugar Land, Texas, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 4 Dezember 2023 | ||||||||||||||||
Veranstaltungsende: | 7 Dezember 2023 | ||||||||||||||||
Veranstalter : | Lunar and Planetary Institute (LPI) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R SY - Technik für Raumfahrtsysteme | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Verfahren zur verbesserten Detektion, Ortung und Verfolgung von Orbitalen Objekten | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Raumflugbetrieb und Astronautentraining > Raumflugtechnologie | ||||||||||||||||
Hinterlegt von: | Ravi, Pavithra | ||||||||||||||||
Hinterlegt am: | 21 Dez 2023 11:39 | ||||||||||||||||
Letzte Änderung: | 30 Apr 2024 03:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags