Kaleel, Ibrahim und Rauscher, Sophie-Maria und Raina, Arun (2023) RECONSTRUCTION OF A SIC-SIC CMC MICROSTRUCTURE USING DEEP LEARNING AND ADVANCED IMAGE PROCESSING TECHNIQUE. In: 38th Technical Conference of the American Society for Composites, ASC 2023. Destech Publications, Inc.. 38th Annual Technical Conference, ASC2023, 2023-09-18 - 2023-09-20, Greater Boston, USA. doi: 10.12783/asc38/36681. ISBN 978-160595691-6.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
The paper presents a workflow for the reconstruction of a SiC-SiC ceramic matrix composite (CMC) microstructure using advanced image processing techniques and deep learning. The objective of this research is to develop highly accurate physics-based computational models for CMCs by gaining a comprehensive understanding of the microstructural features and their impact on material properties. A workflow is presented to classify voxels into individual components and extract stochastic data for establishing microstructure-property correlations. X-ray computed tomography (CT) data of the SiC/SiC CMC with a plain weave architecture and 00/900 fiber orientation are reconstructed using advanced image processing techniques. The resulting CT data is successfully segmented into three material constituents: tows, matrix, and pores. Pore segmentation is accomplished using the Otsu segmentation algorithm, while a deep learning-based U-net model is employed for accurate segmentation between SiC tows and the SiC matrix. Furthermore, an anisotropic segmentation algorithm is utilized to classify tow voxels along different directions, capturing the intricate variations within the microstructure. Geometrical and morphological attributes are extracted from the segmented data for further analysis.
elib-URL des Eintrags: | https://elib.dlr.de/200948/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | RECONSTRUCTION OF A SIC-SIC CMC MICROSTRUCTURE USING DEEP LEARNING AND ADVANCED IMAGE PROCESSING TECHNIQUE | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 20 September 2023 | ||||||||||||||||
Erschienen in: | 38th Technical Conference of the American Society for Composites, ASC 2023 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.12783/asc38/36681 | ||||||||||||||||
Verlag: | Destech Publications, Inc. | ||||||||||||||||
Name der Reihe: | ASC38 | ||||||||||||||||
ISBN: | 978-160595691-6 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Ceramic matrix composites; Computerized tomography; Data mining; Deep learning; Image reconstruction; Image segmentation; Learning systems; Matrix algebra; Microstructure; Silicon; Stochastic systems | ||||||||||||||||
Veranstaltungstitel: | 38th Annual Technical Conference, ASC2023 | ||||||||||||||||
Veranstaltungsort: | Greater Boston, USA | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 18 September 2023 | ||||||||||||||||
Veranstaltungsende: | 20 September 2023 | ||||||||||||||||
Veranstalter : | American Society for Composites (ASC) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Umweltschonender Antrieb | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L CP - Umweltschonender Antrieb | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Werkstoffe und Herstellverfahren | ||||||||||||||||
Standort: | Augsburg | ||||||||||||||||
Institute & Einrichtungen: | Institut für Test und Simulation für Gasturbinen | ||||||||||||||||
Hinterlegt von: | Rauscher, Sophie-Maria | ||||||||||||||||
Hinterlegt am: | 22 Dez 2023 11:38 | ||||||||||||||||
Letzte Änderung: | 31 Okt 2024 09:40 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags