Kupriyanov, Alexey und Reis, Arthur und Schilling, Manuel und Müller, Vitali und Müller, Jürgen (2023) Evaluation of optical accelerometry for next generation gravimetry missions. EGU General Assembly 2023, 2023-04-23 - 2023-04-28, Wien, Österreich. doi: 10.5194/egusphere-egu23-2224.
![]() |
PDF
296kB |
![]() |
PDF
- Nur DLR-intern zugänglich
3MB |
Offizielle URL: https://meetingorganizer.copernicus.org/EGU23/EGU23-2224.html
Kurzfassung
Twenty years of gravity observations from the satellite missions GRACE, GOCE, GRACE-FO have provided unique data about mass redistribution processes in the Earth system, such as melting of Greenland's ice shields, sea level changes, underground water depletion, droughts, floods, etc. Ongoing climate change underlines the urgent need to continue this kind of observations utilizing Next Generation Gravimetry Missions (NGGM) with enhanced instruments. Here, we focus on accelerometers (ACC). Drifts of the electrostatic accelerometers (EA) are one of the limiting factors in the current space gravimetry missions dominating the error contribution at low frequencies (<1e-3 Hz). The focus of this study is on the modelling of enhanced EAs with laser-interferometric readout, so called "optical accelerometers" and evaluating their performance at Low Earth Orbits (LEO). Contrary to GRACE(-FO) or GOCE capacitive accelerometers, optical ones sense the motion of the test mass (TM) in one or more axes by applying laser interferometry. Combination of sensing in multiple directions and of several test masses would lead to enhanced gradiometry which would improve the determination of the static gravity field to a higher spatial resolution and may even enable to observe time-variable gravity changes. Our research is based on very promising results of the mission LISA-Pathfinder which has demonstrated the benefit of using a drag-free system in combination with optical accelerometry and UV TM discharge which allowed sensing of non-gravitational accelerations several orders of magnitude more accurate than it is realized in current gravity missions like GRACE-FO. This research project is carried out in close collaboration with the IGP and the DLR-SI, to provide - on the long run - a roadmap for improved angular and linear accelerometry for NGGM. In this presentation, we now introduce a framework for modeling enhanced EA with laser-interferometric readout mainly developed by IGP including major noise sources, like actuation noise, capacitive sensing, stiffness and thermal bias. Also, parametrization of the developed ACC model will be discussed including different TM weights and TM-electrode housing gaps. Finally, improved results of the recovered gravity field will be shown based on various mission scenarios applying optical accelerometry and gradiometry.
elib-URL des Eintrags: | https://elib.dlr.de/200900/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||
Titel: | Evaluation of optical accelerometry for next generation gravimetry missions | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
DOI: | 10.5194/egusphere-egu23-2224 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | GRACE, Gravity Field, Accelerometer | ||||||||||||||||||||||||
Veranstaltungstitel: | EGU General Assembly 2023 | ||||||||||||||||||||||||
Veranstaltungsort: | Wien, Österreich | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 23 April 2023 | ||||||||||||||||||||||||
Veranstaltungsende: | 28 April 2023 | ||||||||||||||||||||||||
Veranstalter : | European Geosciences Union | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Kommunikation, Navigation, Quantentechnologien | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R KNQ - Kommunikation, Navigation, Quantentechnologie | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Inertial Sensing for Space Applications | ||||||||||||||||||||||||
Standort: | Hannover | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Satellitengeodäsie und Inertialsensorik > Satellitengeodäsie und geodätische Modellierung | ||||||||||||||||||||||||
Hinterlegt von: | Schilling, Manuel | ||||||||||||||||||||||||
Hinterlegt am: | 09 Jan 2024 16:32 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:01 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags