Dresia, Kai und Kurudzija, Eldin und Deeken, Jan C. und Waxenegger-Wilfing, Günther (2023) Improved Wall Temperature Prediction for the LUMEN Rocket Combustion Chamber with Neural Networks. Aerospace, 10 (5). Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/aerospace10050450. ISSN 2226-4310.
PDF
- Nur DLR-intern zugänglich
- Verlagsversion (veröffentlichte Fassung)
9MB |
Kurzfassung
Accurate calculations of the heat transfer and the resulting maximum wall temperature are essential for the optimal design of reliable and efficient regenerative cooling systems. However, predicting the heat transfer of supercritical methane flowing in cooling channels of a regeneratively cooled rocket combustor presents a significant challenge. High-fidelity CFD calculations provide sufficient accuracy but are computationally too expensive to be used within elaborate design optimization routines. In a previous work it has been shown that a surrogate model based on neural networks is able to predict the maximum wall temperature along straight cooling channels with convincing precision when trained with data from CFD simulations for simple cooling channel segments. In this paper, the methodology is extended to cooling channels with curvature. The predictions of the extended model are tested against CFD simulations with different boundary conditions for the representative LUMEN combustor contour with varying geometries and heat flux densities. The high accuracy of the extended models predictions, suggests that it will be a valuable tool for designing and analyzing regenerative cooling systems with greater efficiency and effectiveness.
elib-URL des Eintrags: | https://elib.dlr.de/200337/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Improved Wall Temperature Prediction for the LUMEN Rocket Combustion Chamber with Neural Networks | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Mai 2023 | ||||||||||||||||||||
Erschienen in: | Aerospace | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 10 | ||||||||||||||||||||
DOI: | 10.3390/aerospace10050450 | ||||||||||||||||||||
Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||
ISSN: | 2226-4310 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | neural network; surrogate model; heat transfer; machine learning; LUMEN; rocket engine; regenerative cooling | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Raumtransport | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RP - Raumtransport | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Projekt LUMEN (Liquid Upper Stage Demonstrator Engine) | ||||||||||||||||||||
Standort: | Lampoldshausen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Raumfahrtantriebe > Raketenantriebssysteme | ||||||||||||||||||||
Hinterlegt von: | Dresia, Kai | ||||||||||||||||||||
Hinterlegt am: | 04 Dez 2023 08:39 | ||||||||||||||||||||
Letzte Änderung: | 04 Dez 2023 08:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags