elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Evaluating four AOD Datasets as Predictors for PM2.5 using a Random Forest Approach

Handschuh, Jana und Erbertseder, Thilo und Baier, Frank (2023) Evaluating four AOD Datasets as Predictors for PM2.5 using a Random Forest Approach. EUMETSAT 2023, 2023-09-11 - 2023-09-15, Malmö, Schweden.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

With a constantly growing population and urbanization health risks through air pollution become more and more severe. Especially fine particulate matter (PM2.5) is known to be one of the most dangerous pollutants causing serious diseases. A comprehensive monitoring of this pollutant is essential to better depict and understand its spatio-temporal variability and to assess its health effects. As station measurements provide only selective information, satellite observations of the aerosol optical depth (AOD) are widely used to monitor PM2.5 pollution with sufficient spatial coverage. In this study we apply a random forest approach to develop four PM2.5 prediction models for Germany, each incorporating a different AOD dataset together with a variety of additional proxy-data such as meteorological and land surface parameters. We evaluate the effect of resolution and coverage of the satellite data on the overall performance and accuracy of the random forest models. Moreover, we perform a feature analysis to investigate the influence of certain predictor variables on the model results. Beside the well-established AOD data from the Moderate resolution Imaging spectroradiometer (MODIS) onboard Terra and Aqua satellites, including Dark Target (DT) algorithm products and the Multi-Angle Implementation of Atmospheric Correction (MAIAC) product, we also employ more recent datasets from the Sea and Land Surface Temperature Radiometer (SLSTR) onboard Sentinel-3a and from the Tropospheric Monitoring Instrument (TROPOMI) operating on Sentinel-5 precursor. Overall, all models performed very well in predicting PM2.5. We could find an important dependency of the model performance on coverage and resolution of the AOD training data. Feature importance rankings show a higher weight of AOD as predictor variable compared to the proxy data, at least for two of the models.

elib-URL des Eintrags:https://elib.dlr.de/200225/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Evaluating four AOD Datasets as Predictors for PM2.5 using a Random Forest Approach
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Handschuh, JanaJana.Handschuh (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Erbertseder, ThiloThilo.Erbertseder (at) dlr.dehttps://orcid.org/0000-0003-4888-1065NICHT SPEZIFIZIERT
Baier, FrankFrank.Baier (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2023
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:PM2.5, Random Forest, AOD, SLSTR, TROPOMI, MODIS
Veranstaltungstitel:EUMETSAT 2023
Veranstaltungsort:Malmö, Schweden
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:11 September 2023
Veranstaltungsende:15 September 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Atmosphäre
Hinterlegt von: Handschuh, Jana
Hinterlegt am:04 Dez 2023 10:37
Letzte Änderung:24 Apr 2024 21:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.