elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Understanding greenhouse gas (GHG) column concentrations in Munich using the Weather Research and Forecasting (WRF) model

Zhao, Xinxu und Chen, Jia und Marshall, Julia und Gałkowski​​​​​​​, Michal und Hachinger, Stephan und Dietrich, Florian und Shekhar, Ankit und Gensheimer, Johannes und Wenzel, Adrian und Gerbig, Christoph (2023) Understanding greenhouse gas (GHG) column concentrations in Munich using the Weather Research and Forecasting (WRF) model. Atmospheric Chemistry and Physics (ACP), 23 (22), Seiten 14325-14347. Copernicus Publications. doi: 10.5194/acp-23-14325-2023. ISSN 1680-7316.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
13MB

Offizielle URL: https://dx.doi.org/10.5194/acp-23-14325-2023

Kurzfassung

To address ambitious goals of carbon neutrality set at national and city scales, a number of atmospheric networks have been deployed to monitor greenhouse gas (GHG) concentrations in and around cities. To convert these measurements into estimates of emissions from cities, atmospheric models are used to simulate the transport of various trace gases and help interpret these measurements. We set up a modelling framework using the Weather Research and Forecasting (WRF) model applied at a high spatial resolution (up to 400 m) to simulate the atmospheric transport of GHGs and attempt a preliminary interpretation of the observations provided by the Munich Urban Carbon Column Network (MUCCnet). Building on previous analyses using similar measurements performed within a campaign for the city of Berlin and its surroundings (Zhao et al., 2019), our modelling framework has been improved regarding the initialization of tagged tracers, model settings, and input data. To assess the model performance, we validate the modelled output against two local weather stations and two radiosonde observations, as well as observed column GHG concentrations. The measurements were provided by the measurement campaign that was carried out from 1 to 30 August 2018. The modelled wind matches well with the measurements from the weather stations, with wind speeds slightly overestimated. In general, the model is able to reproduce the measured slant column concentrations of CH4 and their variability, while for CO2, a difference in the slant column CO2 of around 3.7 ppm is found in the model. This can be attributed to the initial and lateral boundary conditions used for the background tracer. Additional mismatches in the diurnal cycle could be explained by an underestimation of nocturnal respiration in the modelled CO2 biogenic fluxes. The differential column method (DCM) has been applied to cancel out the influence from the background concentrations. We optimize its application by selecting suitable days on which the assumption of the DCM holds true: a relatively uniform air mass travels over the city, passing from an upwind site to a downwind site. In particular, the Stochastic Time-Inverted Lagrangian Transport (STILT) model is used here and driven by our WRF-modelled meteorological fields to obtain footprints (i.e. the potential areas of influence for signals observed at measurement stations), further used for interpreting measurement results. Combining these footprints with local knowledge of emission sources, we find evidence of CH4 sources near Munich that are missing or underestimated in the emission inventory used. This demonstrates the potential of this data-model framework to constrain local sources and improve emission inventories.

elib-URL des Eintrags:https://elib.dlr.de/200022/
Dokumentart:Zeitschriftenbeitrag
Titel:Understanding greenhouse gas (GHG) column concentrations in Munich using the Weather Research and Forecasting (WRF) model
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zhao, XinxuTU München, München, Germanyhttps://orcid.org/0000-0002-2251-3451NICHT SPEZIFIZIERT
Chen, JiaTU München, München, Germanyhttps://orcid.org/0000-0002-6350-6610NICHT SPEZIFIZIERT
Marshall, JuliaDLR, IPAhttps://orcid.org/0000-0003-2648-128XNICHT SPEZIFIZIERT
Gałkowski​​​​​​​, MichalAGH University, Kraków, Polandhttps://orcid.org/0000-0003-1681-3965NICHT SPEZIFIZIERT
Hachinger, StephanLRZ Garching, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dietrich, FlorianTU München, München, Germanyhttps://orcid.org/0000-0002-3069-9946NICHT SPEZIFIZIERT
Shekhar, AnkitETH Zürich, Zürich, CHhttps://orcid.org/0000-0003-0802-2821NICHT SPEZIFIZIERT
Gensheimer, JohannesTU München, München, Germanyhttps://orcid.org/0000-0002-8422-4508NICHT SPEZIFIZIERT
Wenzel, AdrianTU München, München, Germanyhttps://orcid.org/0000-0001-6016-6174NICHT SPEZIFIZIERT
Gerbig, ChristophMPI für Chemie, Jena, Germany​​​​​​​https://orcid.org/0000-0002-1112-8603NICHT SPEZIFIZIERT
Datum:20 November 2023
Erschienen in:Atmospheric Chemistry and Physics (ACP)
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:23
DOI:10.5194/acp-23-14325-2023
Seitenbereich:Seiten 14325-14347
Verlag:Copernicus Publications
ISSN:1680-7316
Status:veröffentlicht
Stichwörter:greenhouse gases, remote sensing, methane, carbon dioxide, urban monitoring
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):R - keine Zuordnung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Atmosphärische Spurenstoffe
Hinterlegt von: Marshall, Julia
Hinterlegt am:29 Nov 2023 15:36
Letzte Änderung:29 Nov 2023 15:36

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.