Geiß, Christian und Maier, Jana und So, Emily und Zhu, Yue (2023) LSTM models for spatiotemporal extrapolation of population data. In: 2023 Joint Urban Remote Sensing Event, JURSE 2023, Seiten 1-4. Joint Urban Remote Sensing Event (JURSE), 2023-05-17 - 2023-05-19, Kreta, Griechenland. doi: 10.1109/JURSE57346.2023.10144145. ISBN 978-166549373-4. ISSN 2642-9535.
PDF
1MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10144145
Kurzfassung
The anticipation of future geospatial population distributions is crucial for numerous application domains. Here, we capitalize upon existing gridded population time series data sets, which are provided on an open source basis globally, and implement a machine learning model tailored for time series analysis, i.e., Long Short Term Memory (LSTM) network. In detail, we harvest WorldPop population data and learn an LSTM model for anticipating population along a three-year interval. Experimental results are obtained from Peru’s capital Lima, which features a high population dynamic. To gain insights regarding the competitive performance of LSTM models in this application context, we also implement multilinear regression and Random Forest models for comparison. The results underline the usefulness of temporal models, i.e., LSTM, for forecasting gridded population data.
elib-URL des Eintrags: | https://elib.dlr.de/199941/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||
Titel: | LSTM models for spatiotemporal extrapolation of population data | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | Mai 2023 | ||||||||||||||||||||
Erschienen in: | 2023 Joint Urban Remote Sensing Event, JURSE 2023 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
DOI: | 10.1109/JURSE57346.2023.10144145 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||
ISSN: | 2642-9535 | ||||||||||||||||||||
ISBN: | 978-166549373-4 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | spatiotemporal population modeling; time series data; LSTM models; Lima, Peru | ||||||||||||||||||||
Veranstaltungstitel: | Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||||||
Veranstaltungsort: | Kreta, Griechenland | ||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||
Veranstaltungsbeginn: | 17 Mai 2023 | ||||||||||||||||||||
Veranstaltungsende: | 19 Mai 2023 | ||||||||||||||||||||
Veranstalter : | IEEE | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||
Hinterlegt von: | Geiß, Christian | ||||||||||||||||||||
Hinterlegt am: | 29 Nov 2023 10:55 | ||||||||||||||||||||
Letzte Änderung: | 14 Aug 2024 10:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags