elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Fast Kötter–Nielsen–Høholdt interpolation over skew polynomial rings and its application in coding theory

Bartz, Hannes und Jerkovits, Thomas und Rosenkilde, Johan (2023) Fast Kötter–Nielsen–Høholdt interpolation over skew polynomial rings and its application in coding theory. Designs, Codes and Cryptography. Springer. doi: 10.1007/s10623-023-01315-4. ISSN 0925-1022.

[img] PDF - Nur DLR-intern zugänglich - Preprintversion (eingereichte Entwurfsversion)
473kB

Kurzfassung

Skew polynomials are a class of non-commutative polynomials that have several applications in computer science, coding theory and cryptography. In particular, skew polynomials can be used to construct and decode evaluation codes in several metrics, like e.g. the Hamming, rank, sum-rank and skew metric. We propose a fast divide-and-conquer variant of Kötter–Nielsen–Høholdt (KNH) interpolation algorithm: it inputs a list of linear functionals on skew polynomial vectors, and outputs a reduced Gröbner basis of their kernel intersection. We show, that the proposed KNH interpolation can be used to solve the interpolation step of interpolation-based decoding of interleaved Gabidulin codes in the rank-metric, linearized Reed–Solomon codes in the sum-rank metric and skew Reed–Solomon codes in the skew metric requiring at most operations in , where n is the length of the code, the interleaving order, the complexity for multiplying two skew polynomials of degree at most n, the matrix multiplication exponent and the soft-O notation which neglects log factors. This matches the previous best speeds for these tasks, which were obtained by top–down minimal approximant bases techniques, and complements the theory of efficient interpolation over free skew polynomial modules by the bottom-up KNH approach. In contrast to the top–down approach the bottom-up KNH algorithm has no requirements on the interpolation points and thus does not require any pre-processing.

elib-URL des Eintrags:https://elib.dlr.de/199865/
Dokumentart:Zeitschriftenbeitrag
Titel:Fast Kötter–Nielsen–Høholdt interpolation over skew polynomial rings and its application in coding theory
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bartz, Hanneshannes.bartz (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jerkovits, ThomasThomas.Jerkovits (at) dlr.dehttps://orcid.org/0000-0002-7538-7639147729468
Rosenkilde, Johanjsrn (at) dtu.dkhttps://orcid.org/0000-0002-3540-0456NICHT SPEZIFIZIERT
Datum:18 November 2023
Erschienen in:Designs, Codes and Cryptography
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1007/s10623-023-01315-4
Verlag:Springer
ISSN:0925-1022
Status:veröffentlicht
Stichwörter:Fast Kötter interpolation · Skew polynomials · Linearized Reed-Solomon codes · Sum-rank metric · Skew metric
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Kommunikation, Navigation, Quantentechnologien
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R KNQ - Kommunikation, Navigation, Quantentechnologie
DLR - Teilgebiet (Projekt, Vorhaben):R - Synergieprojekt Cybersecure Satellite Navigation for Aviation and Beyond
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Kommunikation und Navigation > Satellitennetze
Hinterlegt von: Bartz, Hannes
Hinterlegt am:29 Nov 2023 18:15
Letzte Änderung:29 Nov 2023 18:15

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.