elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Daily spread prediction of European wildfires based on historical burned area time series from Earth observation data using a spatio-temporal graph neural network

Rösch, Moritz (2023) Daily spread prediction of European wildfires based on historical burned area time series from Earth observation data using a spatio-temporal graph neural network. Masterarbeit, Julius-Maximilians-Universität Würzburg.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Wildfires are natural disasters that shape ecosystems and have adverse effects on the environment, economy, infrastructure, and human lives. Anthropogenic climate change is intensifying global fire activity, with a particularly alarming outlook for the fire-prone Mediterranean. To mitigate catastrophic wildfires, wildfire spread models play an essential role in estimating fire propagation during emergency response. Existing operational models rely on semi-empirical assumptions, suffering from substantial uncertainties and limited transferability. Additionally, the scarcity of high-quality reference data restricts the use of data-driven modeling approaches. This thesis constructed a comprehensive dataset incorporating the historical daily burned area time series of all European wildfires between 2016 and 2022, along with associated wildfire driver variables. Using this dataset, a novel Deep Learning (DL) wildfire spread modeling approach, employing a Spatio-Temporal Graph Neural Network (STGNN), was developed on a regional scale for the country of Portugal and on a continental scale for the entire Mediterranean. The Portugal and Mediterranean models did not achieve satisfactory results in the delineation of the wildfire spread perimeters, largely due to an overprediction bias, but are consistent with the results of other data-driven modeling approaches. General spread trends were correctly predicted and could still be of use for operational decision-making. The model performances improved with larger daily fire spread sizes and ongoing prediction days, highlighting the importance of spatio-temporal dependencies for wildfire spread modeling. The Mediterranean model demonstrated similar accuracies to the Portugal model and showed strong generalization across fire-prone Mediterranean countries and fire seasons, indicating the suitability of DL models for creating transferable, large-scale wildfire spread models. Noise in the reference dataset can explain the models' low overall performance, highlighting the current constraints of data-driven wildfire spread models.

elib-URL des Eintrags:https://elib.dlr.de/199652/
Dokumentart:Hochschulschrift (Masterarbeit)
Zusätzliche Informationen:1. Supervisor: Prof. Dr. Tobias Ullmann, Institute of Geography and Geology – Department of Remote Sensing 2. Supervisor: Dr. Michael Nolde, German Remote Sensing Data Center (DFD) – Department of GeoRisks and Civil Security
Titel:Daily spread prediction of European wildfires based on historical burned area time series from Earth observation data using a spatio-temporal graph neural network
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Rösch, Moritzmoritz.roesch (at) stud-mail.uni-wuerzburg.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:31 Oktober 2023
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Seitenanzahl:85
Status:veröffentlicht
Stichwörter:Wildfire Spread Modelling, Spatio-Temporal Graph Neural Network, Burnt Areas
Institution:Julius-Maximilians-Universität Würzburg
Abteilung:Institute of Geography and Geology, Department of Remote Sensing
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Geowissenschaftl. Fernerkundungs- und GIS-Verfahren
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Nolde, Dr. Michael
Hinterlegt am:27 Nov 2023 10:25
Letzte Änderung:27 Nov 2023 10:25

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.