elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Quantum Computing and Quantum Machine Learning for Earth System Models

Pastori, Lorenzo und Schwabe, Mierk und Eyring, Veronika (2023) Quantum Computing and Quantum Machine Learning for Earth System Models. Quantum Information Processing – Applications on Gate-based an Annealing Systems, 2023-08-28 - 2023-09-01, Jülich, Deutschland.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

Long-term climate projections require running global Earth system models on timescales of hundreds of years and have, due to their complexity and high computational costs, relatively coarse resolution (40-100 km in the horizontal direction). Unresolved sub-grid scale processes, such as clouds, convection or turbulence, are described in a statistical manner by so called parametrizations. Parametrizations are still one of the major sources of uncertainty in climate projections, owing to systematic model discrepancies as well as possibly sub optimal choices of the underlying free parameters. In the last years, there has been increasing focus on using machine learning (ML) methods to address these challenges. While enabling several improvements, the use of ML also highlights several requirements such as the ability to generalize to unseen physical scenarios, along with the need of robust and efficient multi-parameter optimization routines. Quantum computing offers alternative paradigms, which are promising candidates for addressing these challenges. Quantum machine learning (QML) models could benefit from better expressivity and generalization capability compared to classical ML, hence constituting promising Ansätze for accurate parametrizations in Earth system models. Quantum optimization algorithms such as quantum annealing are expected to provide substantial speed-ups compared to classical routines. They are thus suited as optimization subroutines in quantum-enhanced protocols for model tuning, a currently very timeconsuming step in the development of Earth system models. Here, we discuss these ideas and highlight opportunities and challenges in the use of quantum computers for improving climate and Earth system models and their analysis, and accelerating their development.

elib-URL des Eintrags:https://elib.dlr.de/199461/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Quantum Computing and Quantum Machine Learning for Earth System Models
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Pastori, LorenzoDLR, IPAhttps://orcid.org/0000-0001-5882-8482147716739
Schwabe, MierkDLR, IPAhttps://orcid.org/0000-0001-6565-5890NICHT SPEZIFIZIERT
Eyring, VeronikaDLR, IPAhttps://orcid.org/0000-0002-6887-4885NICHT SPEZIFIZIERT
Datum:2023
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:quantum computing, quantum machine learning, climate models, earth system models
Veranstaltungstitel:Quantum Information Processing – Applications on Gate-based an Annealing Systems
Veranstaltungsort:Jülich, Deutschland
Veranstaltungsart:Workshop
Veranstaltungsbeginn:28 August 2023
Veranstaltungsende:1 September 2023
Veranstalter :Jülich Supercomputing Centre
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung, R - Quantencomputing
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse
Hinterlegt von: Pastori, Lorenzo
Hinterlegt am:29 Nov 2023 15:07
Letzte Änderung:24 Apr 2024 21:00

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.