Selz, Tobias und Craig, George C. (2023) Can Artificial Intelligence‐Based Weather Prediction Models Simulate the Butterfly Effect? Geophysical Research Letters, 50 (20), Seiten 1-9. Wiley. doi: 10.1029/2023GL105747. ISSN 0094-8276.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://dx.doi.org/10.1029/2023GL105747
Kurzfassung
We investigate error growth from small-amplitude initial condition perturbations, simulated with a recent artificial intelligence-based weather prediction model. From past simulations with standard physically-based numerical models as well as from theoretical considerations it is expected that such small-amplitude initial condition perturbations would grow very fast initially. This fast growth then sets a fixed and fundamental limit to the predictability of weather, a phenomenon known as the butterfly effect. We find however, that the AI-based model completely fails to reproduce the rapid initial growth rates and hence would incorrectly suggest an unlimited predictability of the atmosphere. In contrast, if the initial perturbations are large and comparable to current uncertainties in the estimation of the initial state, the AI-based model basically agrees with physically-based simulations, although some deficits are still present.
elib-URL des Eintrags: | https://elib.dlr.de/199357/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | Can Artificial Intelligence‐Based Weather Prediction Models Simulate the Butterfly Effect? | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 26 Oktober 2023 | ||||||||||||
Erschienen in: | Geophysical Research Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Ja | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 50 | ||||||||||||
DOI: | 10.1029/2023GL105747 | ||||||||||||
Seitenbereich: | Seiten 1-9 | ||||||||||||
Verlag: | Wiley | ||||||||||||
ISSN: | 0094-8276 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | artificial-intelligence-based models synoptic-scale error | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||
HGF - Programmthema: | Luftverkehr und Auswirkungen | ||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||
DLR - Forschungsgebiet: | L AI - Luftverkehr und Auswirkungen | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Klima, Wetter und Umwelt | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Verkehrsmeteorologie | ||||||||||||
Hinterlegt von: | Ziegele, Brigitte | ||||||||||||
Hinterlegt am: | 30 Nov 2023 08:03 | ||||||||||||
Letzte Änderung: | 30 Jan 2024 13:00 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags