Peterhans, Vincent Joel und Grabe, Cornelia und Alaya, Erij (2023) Modeling the Pressure-Strain-Correlation in Differential Reynolds Stress Models using Feature Engineering and a Genetic Evolution Algorithm. In: 21. STAB-Workshop - Jahresbericht 2023, Seiten 92-93. 21. STAB - Workshop 2023, 2023-11-07 - 2023-11-08, Göttingen.
PDF
148kB | |
PDF
- Nur DLR-intern zugänglich
3MB |
Offizielle URL: https://www.dlr.de/as/Portaldata/5/Resources/dokumente/veranstaltungen/stab_workshop/Jahresbericht2023.pdf
Kurzfassung
Simulating turbulent flows using Reynolds-Averaged-Navier-Stokes-Equations (RANS) models is a very efficient approach for most practical applications, as they aim to produce accurate results, while being more performant than scale-resolving methods. However all RANS approaches require the modeling of unknown terms, one of them being the pressure-strain-correlation (PSC) in the differential Reynolds Stress Model. A state-of-the-art model for this is the Speziale-Sarkar-Gatski (SSG) model, which tries to represent the PSC term using a set of basis tensors and (in its simplest form) five coefficients that need to be calibrated to achieve the desired behavior. These coefficients are usually assumed to be constant, however, theoretical considerations suggest they should be functions of the current flow-state, considerably increasing the models complexity and capabilites. A feature engineering process for a genetic evolution programming optimization is proposed to determine functions improving the original models results for flows with adverse pressure gradients.
elib-URL des Eintrags: | https://elib.dlr.de/199319/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Modeling the Pressure-Strain-Correlation in Differential Reynolds Stress Models using Feature Engineering and a Genetic Evolution Algorithm | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 8 November 2023 | ||||||||||||||||
Erschienen in: | 21. STAB-Workshop - Jahresbericht 2023 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Seitenbereich: | Seiten 92-93 | ||||||||||||||||
Herausgeber: |
| ||||||||||||||||
Name der Reihe: | Jahresbericht | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | RANS, SSG/LLR, Adverse Pressure Gradient, Genetic Evolution, Feature Engineering, Feature Selection | ||||||||||||||||
Veranstaltungstitel: | 21. STAB - Workshop 2023 | ||||||||||||||||
Veranstaltungsort: | Göttingen | ||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||
Veranstaltungsbeginn: | 7 November 2023 | ||||||||||||||||
Veranstaltungsende: | 8 November 2023 | ||||||||||||||||
Veranstalter : | DLR, STAB | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||
Standort: | Göttingen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, GO | ||||||||||||||||
Hinterlegt von: | Peterhans, Vincent Joel | ||||||||||||||||
Hinterlegt am: | 07 Dez 2023 09:19 | ||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags