elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Automatic machine-learning based water body detection algorithm as part of the hydrological conditioning of the TanDEM-X DEM

Keller, Carolin und Gorzawski, Larissa und Warmedinger, Leena Julia und Huber, Martin und Wessel, Birgit und Roth, Achim (2023) Automatic machine-learning based water body detection algorithm as part of the hydrological conditioning of the TanDEM-X DEM. WissensAustauschWorkshop Machine Learning 9, 2023-11-13 - 2023-11-16, Ulm, Deutschland.

[img] PDF - Nur DLR-intern zugänglich
2MB

Kurzfassung

The generation of a global water body mask (WBM) is part of the hydrological pre-conditioning of the TandDEM-X DEM in order to improve hydrological analyses. Its core is an automatic machine-learning (ML) based water body detection using a Gradient Boosted Decision Tree (GBDT) algorithm as underlying classifier with Bayesian hyperparameter optimization. The features considered by the algorithm are mainly based on the TanDEM-X datasets assisted by a global Normalized Difference Vegetation Index (NDVI) derived from Sentinel-2 data. The ML model is sustained by hyperparameter tuning in order to learn the spectral signatures and their varieties for water bodies and land surfaces, enabling accurate detection and classification. As sufficient training data is required and to avoid manual hyperparameter tuning, the automation generates training data by using an initial WBM created from reference data which allows for automatic random sampling throughout the feature space to train the classifier. For each TanDEM-X tile, a classified WBM is generated by the automatic ML algorithm. For quality control, the classification is compared to an alternative WBM based on the WBM quality layer of the Copernicus (COP) DEM modified using the TanDEM-X dataset. First results show that the classified WBM is able to improve the alternative COP WBM in approximately 45% of tiles processed so far, underlining the quality of the used ML algorithm. Compared to the COP WBM, the ML based approach shows large improvements in northern regions containing mostly frozen water as it has the flexibility of including the minimum observed amplitude preferably capturing frozen open water. On the other hand, arid regions often show too little water resulting in an insufficient number of training pixels to perform a classification.

elib-URL des Eintrags:https://elib.dlr.de/199217/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Automatic machine-learning based water body detection algorithm as part of the hydrological conditioning of the TanDEM-X DEM
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Keller, CarolinCarolin.Walper (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gorzawski, LarissaLarissa.Gorzawski (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Warmedinger, Leena JuliaLeenaJulia.Warmedinger (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Huber, MartinMartin.Huber (at) dlr.dehttps://orcid.org/0000-0003-2665-2149NICHT SPEZIFIZIERT
Wessel, BirgitBirgit.Wessel (at) dlr.dehttps://orcid.org/0000-0002-8673-2485146765839
Roth, AchimAchim.Roth (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:13 November 2023
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:HydroSHEDS, machine-learning, water classification
Veranstaltungstitel:WissensAustauschWorkshop Machine Learning 9
Veranstaltungsort:Ulm, Deutschland
Veranstaltungsart:Workshop
Veranstaltungsbeginn:13 November 2023
Veranstaltungsende:16 November 2023
Veranstalter :Institute for AI safety and security, DLR Ulm
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - TerraSAR/TanDEM
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum
Hinterlegt von: Keller, Carolin
Hinterlegt am:16 Nov 2023 10:10
Letzte Änderung:24 Apr 2024 20:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.