elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Automatic machine-learning based water body detection algorithm as part of the hydrological conditioning of the TanDEM-X DEM

Keller, Carolin und Warmedinger, Leena Julia und Huber, Martin und Gorzawski, Larissa und Anand, Mira und Lehner, Bernhard und Thieme, Michele und Wessel, Birgit und Roth, Achim (2023) Automatic machine-learning based water body detection algorithm as part of the hydrological conditioning of the TanDEM-X DEM. TerraSAR-X / TanDEM-X Science Team Meeting 2023, 2023-10-18 - 2023-10-20, Oberpfaffenhofen, Wessling, Deutschland.

[img] PDF - Nur DLR-intern zugänglich
5MB

Kurzfassung

The TanDEM-X mission provides a high-resolution global digital elevation model (DEM) which works as a base for data analyses where the Earths relief is a key source of information. The unedited version of the TanDEM-X DEM contains artefacts such as rough surfaces of open water due to decorrelation effects, which impair the derivation of streams and hydrological assessments. To counteract distortions inherent to the interferometric synthetic aperture radar acquisition and processing and to support the conditioning of the elevation data in order to improve hydrological analyses, a global water body mask (WBM) is generated. The presented technique is a major part of the pre-conditioning of the global TanDEM-X DEM for producing a second and refined version of the HydroSHEDS database. Its core is an automatic machine-learning (ML) based water body detection using a Gradient Boosted Decision Tree (GBDT) algorithm as underlying classifier with Bayesian hyperparameter optimization. The features considered by the algorithm are mainly based on the TanDEM-X datasets assisted by a global Normalized Difference Vegetation Index (NDVI) derived from Sentinel-2 data. The ML model is sustained by hyperparameter tuning in order to learn the spectral signatures and their varieties for water bodies and land surfaces, enabling accurate detection and classification. As sufficient training data is required and to avoid manual hyperparameter tuning, the automation generates training data by using a maximum WBM created from reference data which allows for automatic random sampling throughout the feature space to train the classifier. For each TanDEM-X tile, a classified WBM is generated by the automatic ML algorithm as well as an alternative WBM based on the WBM quality layer of the Copernicus (COP) DEM modified using the TanDEM-X dataset. Then, either the superior water body mask or a combination of both is selected. First results show that the classified WBM is able to improve the alternative COP WBM in approximately 45% of tiles processed so far, underlining the quality of the used ML algorithm. However, regional analysis uncovers large differences. While the COP WBM achieves better results in arid areas, the classified WBM is superior in northern regions. Frozen water imposes great challenges to water detection algorithms. The ML based approach shows large improvements in northern regions compared to the COP WBM as it has the flexibility of including the minimum observed amplitude preferably capturing open water. Arid regions often show too little water resulting in an insufficient number of training pixels to perform a classification.

elib-URL des Eintrags:https://elib.dlr.de/199211/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Automatic machine-learning based water body detection algorithm as part of the hydrological conditioning of the TanDEM-X DEM
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Keller, CarolinCarolin.Walper (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Warmedinger, Leena JuliaLeenaJulia.Warmedinger (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Huber, MartinMartin.Huber (at) dlr.dehttps://orcid.org/0000-0003-2665-2149NICHT SPEZIFIZIERT
Gorzawski, LarissaLarissa.Gorzawski (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Anand, Miramira.anand (at) confluvio.comNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lehner, Bernhardbernhard.lehner (at) mcgill.cahttps://orcid.org/0000-0003-3712-2581NICHT SPEZIFIZIERT
Thieme, Michelemichele.thieme (at) wwfus.orgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wessel, BirgitBirgit.Wessel (at) dlr.dehttps://orcid.org/0000-0002-8673-2485146765882
Roth, AchimAchim.Roth (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:19 Oktober 2023
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:HydroSHEDS Machine-Learning water classification
Veranstaltungstitel:TerraSAR-X / TanDEM-X Science Team Meeting 2023
Veranstaltungsort:Oberpfaffenhofen, Wessling, Deutschland
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:18 Oktober 2023
Veranstaltungsende:20 Oktober 2023
Veranstalter :Deutsches Zentrum für Luft- und Raumfahrt (DLR)
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - TerraSAR/TanDEM
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum
Hinterlegt von: Keller, Carolin
Hinterlegt am:16 Nov 2023 10:11
Letzte Änderung:24 Apr 2024 20:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.