elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Application of the Geometrically Exact Intrinsic Beam Model on Rotor Blades

Bleffert, Christian und Dreyer, Lukas und Röhrig-Zöllner, Melven (2023) Application of the Geometrically Exact Intrinsic Beam Model on Rotor Blades. Math 2 Product (M2P), 2023-05-30 - 2023-06-01, Taormina, Italien.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

With the Versatile Aeromechanic Simulation Tool (VAST), the German Aerospace Center (DLR) is developing a software framework for the simulation of rotary wing aircraft. One challenge consists of simulating the dynamic behaviour of rotor blades. In general, rotor blades can be considered as flexible beams for which numerous models have been developed in the past. One of them is the geometrically exact intrinsic beam model [2] which is represented by a time dependent hyperbolic system of partial differential equations (PDE) in one space dimension along a reference line of the considered beam. In contrast to other well-known models like the Euler-Bernoulli model or the Timoschenko model, the governing equations of the intrinsic beam model contain non-linearities which makes it a geometrically exact model. Furthermore, it allows for the modelling of initially curved and twisted anisotropic beams making it well-suited for the simulation of rotor blades. In [1], we used a practical formulation of the intrinsic beam model as a system of linear hyperbolic balance laws to derive a discontinuous Galerkin (DG) approach for its discretization. For boundary conditions describing the mechanical setup of a clamped-free beam, we found that this discretization approach is numerically stable if no energy comes from the boundaries of the considered domain. Choosing a DG approach for the discretization of the problem is not only senseful because it is very efficient and helps minimizing the degrees of freedom in the computationally intensive analysis of helicopters. It is also able to represent discontinuities accurately which is interesting for the simulation of rotor blades as for example material parameters might change discontinuously along the blade. For steady-state cases, we show that the intrinsic beam DG method is more accurate than our previous approach using experimental results for a rotating beam in vacuum. In addition, we show first numerical results for simulating the dynamic behaviour and discuss ongoing research and challenges concerning boundary conditions, stability and damping. REFERENCES [1] C. Bleffert. An Energy Stable Discontinuous Galerkin Discretization Approach for the Geometrically Exact Intrinsic Beam Model. Master thesis, University of Cologne, 2022. [2] D. H. Hodges. Geometrically exact, intrinsic theory for dynamics of curved and twisted anisotropic beams. AIAA Journal, 41(6):1131-1137, 2003.

elib-URL des Eintrags:https://elib.dlr.de/199089/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Application of the Geometrically Exact Intrinsic Beam Model on Rotor Blades
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Bleffert, Christianchristian.bleffert (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dreyer, LukasLukas.Dreyer (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Röhrig-Zöllner, MelvenMelven.Roehrig-Zoellner (at) dlr.dehttps://orcid.org/0000-0001-9851-5886NICHT SPEZIFIZIERT
Datum:31 Mai 2023
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Geometrically Exact Beams, Discontinuous Galerkin, Rotor Blades, Energy Stability
Veranstaltungstitel:Math 2 Product (M2P)
Veranstaltungsort:Taormina, Italien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:30 Mai 2023
Veranstaltungsende:1 Juni 2023
Veranstalter :ECCOMAS
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Technik für Raumfahrtsysteme
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R SY - Technik für Raumfahrtsysteme
DLR - Teilgebiet (Projekt, Vorhaben):R - Aufgaben SISTEC
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie > High-Performance Computing
Institut für Softwaretechnologie
Hinterlegt von: Bleffert, Christian
Hinterlegt am:07 Dez 2023 16:29
Letzte Änderung:24 Apr 2024 20:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.