Mutreja, Guneet und Bittner, Ksenia (2023) Evaluating Convnet and Transformer Based Self-Supervised Algorithms for Building Roof Form Classification. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Seiten 1-7. ISPRS Geospatial Week 2023, 2023-09-02 - 2023-09-07, Cairo, Egypt. doi: 10.5194/isprs-archives-XLVIII-1-W2-2023-315-2023. ISSN 1682-1750.
|
PDF
3MB |
Kurzfassung
This research paper presents a comprehensive evaluation of various self-supervised learning models for building roof type classification. We conduct linear evaluation experiments for the models pretrained on both the ImageNet1K dataset and a custom building roof type dataset to assess the models' performance for the roof type classification task. The results demonstrate the effectiveness of the ViT-based BEiTV2 model, which outperforms other models on both datasets, achieving an accuracy of 96.8\% from the model pretrained on ImageNet1K dataset and 92.67\% on the model pretrained on building roof type dataset. The class activation maps further validate the strong performance of MoCoV3, BarlowTwins, and DenseCL models. These findings emphasize the potential of self-supervised learning for accurate building roof type classification, with the ViT-based BEiTV2 model showcasing state-of-the-art results.
| elib-URL des Eintrags: | https://elib.dlr.de/198958/ | ||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
| Titel: | Evaluating Convnet and Transformer Based Self-Supervised Algorithms for Building Roof Form Classification | ||||||||||||
| Autoren: |
| ||||||||||||
| Datum: | 7 September 2023 | ||||||||||||
| Erschienen in: | The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences | ||||||||||||
| Referierte Publikation: | Ja | ||||||||||||
| Open Access: | Ja | ||||||||||||
| Gold Open Access: | Nein | ||||||||||||
| In SCOPUS: | Ja | ||||||||||||
| In ISI Web of Science: | Nein | ||||||||||||
| DOI: | 10.5194/isprs-archives-XLVIII-1-W2-2023-315-2023 | ||||||||||||
| Seitenbereich: | Seiten 1-7 | ||||||||||||
| ISSN: | 1682-1750 | ||||||||||||
| Status: | veröffentlicht | ||||||||||||
| Stichwörter: | Roof-form classification, Self-supervised learning, SimCLR, MoCo, ConvNets, Vision transformers, BYOL, BEiT, AI4BuildingModeling | ||||||||||||
| Veranstaltungstitel: | ISPRS Geospatial Week 2023 | ||||||||||||
| Veranstaltungsort: | Cairo, Egypt | ||||||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||||||
| Veranstaltungsbeginn: | 2 September 2023 | ||||||||||||
| Veranstaltungsende: | 7 September 2023 | ||||||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||
| HGF - Programm: | keine Zuordnung | ||||||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||||||
| DLR - Schwerpunkt: | Digitalisierung | ||||||||||||
| DLR - Forschungsgebiet: | D DAT - Daten | ||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | D - Digitaler Atlas 2.0, R - Optische Fernerkundung | ||||||||||||
| Standort: | Oberpfaffenhofen | ||||||||||||
| Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||
| Hinterlegt von: | Mutreja, Guneet | ||||||||||||
| Hinterlegt am: | 13 Nov 2023 12:58 | ||||||||||||
| Letzte Änderung: | 20 Feb 2025 13:26 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags