elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Modelling relative total electron content in Europe during storm time using a neural network

Adolfs, Marjolijn und Hoque, Mohammed Mainul und Shprits, Yuri (2023) Modelling relative total electron content in Europe during storm time using a neural network. IUGG 2023 28th General Assembly, 2023-07-11 - 2023-07-20, Berlin, Germany.

[img] PDF
70kB

Kurzfassung

The ionospheric state is constantly changing and can be described by the integrated electron density estimation commonly known as the total electron content (TEC). The estimate of ionospheric TEC during geomagnetic storms can vary significantly compared to the TEC during quiet conditions. Therefore, it is important that ionospheric models also perform well during perturbed or storm conditions. We developed a neural network (NN)-based model that predicts the storm-time TEC relative to the 27-day median prior to the storm events. The network uses the 27-day median TEC, latitude, longitude, universal time, storm time, solar radio flux index F10.7, global storm index SYM-H and geomagnetic activity index Hp30 as input parameters and the output is the relative TEC with respect to the 27-day median. A storm dataset has been used containing the TEC maps from UQRG global ionosphere maps (GIMs) from the years 1998 until 2020 and comprises in total of 398 storm events. The model was tested with unseen data from 33 storm events that occurred during 2015 and 2020 representing a high- and low solar activity year, respectively. The performance of the storm-time model during the storms in the test dataset was compared with the Neustrelitz TEC model (NTCM) and the NN-based quiet time TEC model, both developed at German Aerospace Center (DLR) and the storm-time model outperforms both.

elib-URL des Eintrags:https://elib.dlr.de/198803/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Modelling relative total electron content in Europe during storm time using a neural network
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Adolfs, MarjolijnMarjolijn.Adolfs (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hoque, Mohammed MainulMainul.Hoque (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Shprits, Yuriyuri.shprits (at) gfz-potsdam.dehttps://orcid.org/0000-0002-9625-0834NICHT SPEZIFIZIERT
Datum:Juli 2023
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:ionosphere; relative total electron content; geomagnetic storms; neural networks; NTCM; European storm-time model
Veranstaltungstitel:IUGG 2023 28th General Assembly
Veranstaltungsort:Berlin, Germany
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:11 Juli 2023
Veranstaltungsende:20 Juli 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Solar-Terrestrische Physik SO
Standort: Neustrelitz
Institute & Einrichtungen:Institut für Solar-Terrestrische Physik > Weltraumwetterbeobachtung
Hinterlegt von: Adolfs, Marjolijn
Hinterlegt am:28 Nov 2023 08:35
Letzte Änderung:24 Apr 2024 20:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.