elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Modelling of Storm-Time Relative Total Electron Content using a Fully Connected Neural Network

Adolfs, Marjolijn und Hoque, Mohammed Mainul und Shprits, Yuri (2023) Modelling of Storm-Time Relative Total Electron Content using a Fully Connected Neural Network. EGU General Assembly 2023, 2023-04-24 - 2023-04-28, Vienna, Austria. doi: 10.5194/egusphere-egu23-15390.

[img] PDF
295kB

Kurzfassung

During geomagnetic storms the total electron content (TEC) can dramatically change compared to quiet-time conditions. Therefore, it is still a challenging task for ionospheric models to predict accurately during storm times. In this work, the relative TEC with respect to the preceding 27-day median TEC is predicted, during storm time for the European region (with longitudes 30°W–50°E and latitudes 32.5°N–70°N) using machine learning techniques. A fully connected neural network (NN) is proposed that uses the 27-day median TEC (referred to as median TEC), latitude, longitude, universal time, storm time, solar radio flux index F10.7, global storm index SYM-H and geomagnetic activity index Hp30 as inputs and the output of the network is the relative TEC. The model was trained with storm-time relative TEC data, computed with UQRG global ionosphere maps (GIMs), from the time period of 1998 until 2019 (2015 is excluded) and contains 365 storms. The model was tested with unseen storm data from 33 storm events during 2015 and 2020. The storm-time relative TEC model’s predictions showed the seasonal behavior of the storms including positive and negative storm phases during winter and summer, respectively, and a mixture of both phases was seen during equinoxes. The relative TEC was converted to the actual TEC, using the median TEC, and was compared to the Neustrelitz TEC model (NTCM) and a NN-based quiet-time TEC model. The storm model outperforms the NTCM by 1.87 TEC units (TECU) and the quiet-time model by 1.34 TECU during storm time.

elib-URL des Eintrags:https://elib.dlr.de/198802/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Modelling of Storm-Time Relative Total Electron Content using a Fully Connected Neural Network
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Adolfs, MarjolijnMarjolijn.Adolfs (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hoque, Mohammed MainulMainul.Hoque (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Shprits, Yuriyuri.shprits (at) gfz-potsdam.dehttps://orcid.org/0000-0002-9625-0834NICHT SPEZIFIZIERT
Datum:April 2023
Referierte Publikation:Nein
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.5194/egusphere-egu23-15390
Status:veröffentlicht
Stichwörter:ionosphere; relative total electron content; geomagnetic storms; neural networks; NTCM; European storm-time model
Veranstaltungstitel:EGU General Assembly 2023
Veranstaltungsort:Vienna, Austria
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:24 April 2023
Veranstaltungsende:28 April 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Solar-Terrestrische Physik SO
Standort: Neustrelitz
Institute & Einrichtungen:Institut für Solar-Terrestrische Physik > Weltraumwetterbeobachtung
Hinterlegt von: Adolfs, Marjolijn
Hinterlegt am:28 Nov 2023 08:34
Letzte Änderung:24 Apr 2024 20:59

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.