Broda, Rafal und Schnerring, Alexander und Krauth, Julian und Röger, Marc und Pitz-Paal, Robert (2023) Towards deep learning based airborne monitoring methods for heliostats in solar tower power plants. In: Proceedings of SPIE - The International Society for Optical Engineering, 12671, Seite 1267108. SPIE. SPIE Optical Engineering + Applications, 2023-08-20 - 2023-08-25, San Diego, USA. doi: 10.1117/12.2676821. ISBN 9781510665569. ISSN 0277-786X.
PDF
- Nur DLR-intern zugänglich
5MB |
Kurzfassung
While deep learning methods have proven their superiority over conventional image processing techniques in many domains, their use in airborne heliostat monitoring remains limited. Our aim is to bridge this gap by developing models to improve and extend existing image-based measurement methods in this field. We use Blender and BlenderProc to generate synthetic image data, which grants us access to vast amounts of training data essential for developing effective deep learning models. The exemplary model we train can potentially solve the following tasks related to airborne heliostat field monitoring: detection of heliostats and detection of mirror facet corners. Our promising preliminary results demonstrate the applicability of our approach to use synthetic training data for the development of the intended deep learning models.
elib-URL des Eintrags: | https://elib.dlr.de/198561/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Towards deep learning based airborne monitoring methods for heliostats in solar tower power plants | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 4 Oktober 2023 | ||||||||||||||||||||||||
Erschienen in: | Proceedings of SPIE - The International Society for Optical Engineering | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
Band: | 12671 | ||||||||||||||||||||||||
DOI: | 10.1117/12.2676821 | ||||||||||||||||||||||||
Seitenbereich: | Seite 1267108 | ||||||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||||||
Verlag: | SPIE | ||||||||||||||||||||||||
Name der Reihe: | Advances in Solar Energy: Heliostat Systems Design, Implementation, and Operation | ||||||||||||||||||||||||
ISSN: | 0277-786X | ||||||||||||||||||||||||
ISBN: | 9781510665569 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | deep learning, object detection, mirrors, image processing, 3D modeling, solar energy, UAV imaging systems | ||||||||||||||||||||||||
Veranstaltungstitel: | SPIE Optical Engineering + Applications | ||||||||||||||||||||||||
Veranstaltungsort: | San Diego, USA | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 20 August 2023 | ||||||||||||||||||||||||
Veranstaltungsende: | 25 August 2023 | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||
HGF - Programm: | Materialien und Technologien für die Energiewende | ||||||||||||||||||||||||
HGF - Programmthema: | Thermische Hochtemperaturtechnologien | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SW - Solar- und Windenergie | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Condition Monitoring | ||||||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Solarforschung > Qualifizierung | ||||||||||||||||||||||||
Hinterlegt von: | Broda, Rafal | ||||||||||||||||||||||||
Hinterlegt am: | 30 Okt 2023 12:18 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:59 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags