Schwabe, Mierk und Pastori, Lorenzo und Dogra, Lena und Klamt, Janis und Sarauer, Ellen und Eyring, Veronika (2023) Quantum Machine Learning for Climate Science. Applications of Quantum Computing, 2023-07-10 - 2023-07-11, Garching, Deutschland.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Earth system models are fundamental to understanding and projecting climate change, although there are considerable biases and uncertainties in their projections. A large contribution to this uncertainty stems from differences in the representation of phenomena such as clouds and convection that occur at scales smaller than the resolved model grid. The long-standing deficiencies in cloud parameterizations have motivated developments of global high-resolution cloud-resolving models that can explicitly resolve clouds and convection. Short simulations from the computationally costly high-resolution models together with observations can serve as information to develop machine learning (ML)-based parameterizations that are then incorporated into Earth system models, which is the goal of various current projects such as the USMILE ERC project. The KLIM-QML project, which is a project of the DLR/BMWK Quantum Computing Initiative, explores how quantum computing, and specifically quantum machine learning (QML) could be used to build upon recent progress in improving climate models using machine learning. Quantum machine learning models have shown remarkable expressive power and generalization capabilities, and are promising alternatives to classical machine learning in certain tasks. Our aim is thus to use QML to improve the representation of subgrid-scale phenomena in the ICOsahedral Non-hydrostatic (ICON) model. ICON is an open-access modelling framework, which is used on a variety of timescales and resolutions, ranging from numerical weather predictions to climate projections. We use regional and global cloud-resolving ICON simulations with data-driven techniques to train QML-based parametrizations, and evaluate their performance against commonly used parametrization schemes as well as machine learning models.
elib-URL des Eintrags: | https://elib.dlr.de/198344/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||
Titel: | Quantum Machine Learning for Climate Science | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 10 Juli 2023 | ||||||||||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | quantum computing, climate modelling | ||||||||||||||||||||||||||||
Veranstaltungstitel: | Applications of Quantum Computing | ||||||||||||||||||||||||||||
Veranstaltungsort: | Garching, Deutschland | ||||||||||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 10 Juli 2023 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 11 Juli 2023 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Atmosphären- und Klimaforschung | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse | ||||||||||||||||||||||||||||
Hinterlegt von: | Schwabe, Dr. Mierk | ||||||||||||||||||||||||||||
Hinterlegt am: | 23 Okt 2023 11:04 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:58 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags