Ehlers, Svenja und Klein, Marco und Henlein, Alexander und Wedler, Mathies und Desmars, Nicolas und Hofmann, Norbert und Stender, Merten (2023) Machine learning for phase-resolved reconstruction of nonlinear ocean wave surface elevations from sparse remote sensing data. Ocean Engineering (288). Elsevier. doi: 10.1016/j.oceaneng.2023.116059. ISSN 0029-8018.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0029801823024435
Kurzfassung
Accurate short-term predictions of phase-resolved water wave conditions are crucial for decision-making in ocean engineering. However, the initialization of remote-sensing-based wave prediction models first requires a reconstruction of wave surfaces from sparse measurements like radar. Existing reconstruction methods either rely on computationally intensive optimization procedures or simplistic modelling assumptions that compromise the real-time capability or accuracy of the subsequent prediction process. We therefore address these issues by proposing a novel approach for phase-resolved wave surface reconstruction using neural networks based on the U-Net and Fourier neural operator (FNO) architectures. Our approach utilizes synthetic yet highly realistic training data on uniform one-dimensional grids, that is generated by the high-order spectral method for wave simulation and a geometric radar modelling approach. The investigation reveals that both models deliver accurate wave reconstruction results and show good generalization for different sea states when trained with spatio-temporal radar data containing multiple historic radar snapshots in each input. Notably, the FNO demonstrates superior performance in handling the data structure imposed by wave physics due to its global approach to learn the mapping between input and output in Fourier space.
elib-URL des Eintrags: | https://elib.dlr.de/198238/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||||||
Titel: | Machine learning for phase-resolved reconstruction of nonlinear ocean wave surface elevations from sparse remote sensing data | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | 15 November 2023 | ||||||||||||||||||||||||||||||||
Erschienen in: | Ocean Engineering | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||||||
DOI: | 10.1016/j.oceaneng.2023.116059 | ||||||||||||||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||||||||||||||
ISSN: | 0029-8018 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Deep operator learning Fourier neural operator Nonlinear ocean waves Phase-resolved surface reconstruction X-band radar images Radar inversion | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Energie | ||||||||||||||||||||||||||||||||
HGF - Programm: | Energiesystemdesign | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | Digitalisierung und Systemtechnologie | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Energie | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | E SY - Energiesystemtechnologie und -analyse | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | E - Energiesystemtechnologie | ||||||||||||||||||||||||||||||||
Standort: | Geesthacht | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Maritime Energiesysteme | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Klein, Marco | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 18 Okt 2023 07:31 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 26 Sep 2024 09:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags