elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Semi-Empirical Model for Conceptual Turbine Vane Cooling Design and Optimization

Schöffler, Robin und Grunwitz, Clemens und Brakmann, Robin (2023) A Semi-Empirical Model for Conceptual Turbine Vane Cooling Design and Optimization. In: ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023. Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, 2023-06-26 - 2023-06-30, Boston, Massachusetts, USA. doi: 10.1115/GT2023-103061. ISBN 978-0-7918-8701-1.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://asmedigitalcollection.asme.org/GT/proceedings-abstract/GT2023/87011/V07BT13A013/1168133

Kurzfassung

Efficient turbine vane cooling designs are increasingly important to improve the thermal efficiency of gas turbines. Evaluating the performance of a cooling design requires the knowledge of the temperature distribution on the vane surface and the cooling air mass flow rate. The estimation of the vane temperature distribution is considered as a conjugate heat transfer problem, which usually requires a computationally intensive 3D CFD-FEM simulation. However, this approach is not suited for an early design phase, when the cooling design frequently changes. A simplified, yet physical approach is necessary to develop an initial cooling design, which can be used as a baseline for more detailed investigations. This paper presents a predictive model for turbine vane cooling and its integration into an optimization tool chain. The model uses a vane geometry model, the aerodynamic flow field and the coolant conditions from an in-house turbine design tool chain. The cooling geometry is divided into multiple interior sections with their own parameterizations, characterizing the cooling method and its geometric representation. Internal cooling, such as impingement or convective cooling, as well as external cooling, namely film cooling, is considered. Taking the material properties of the vane into account, the model calculates the temperature distribution on the vane surface and the coolant mass flow rate to identify critical hot spots and to evaluate a cooling concept. The capabilities of the model are demonstrated in an optimization process to improve the cooling design of a modern high pressure nozzle guide vane. Compared to a manually created cooling concept, the coolant mass flow rate was reduced by more than 20 \% while simultaneously a more uniform metal temperature was achieved.

elib-URL des Eintrags:https://elib.dlr.de/198224/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A Semi-Empirical Model for Conceptual Turbine Vane Cooling Design and Optimization
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schöffler, RobinRobin.Schoeffler (at) dlr.dehttps://orcid.org/0000-0002-0931-9021147624589
Grunwitz, ClemensClemens.Grunwitz (at) dlr.dehttps://orcid.org/0000-0003-4157-7415NICHT SPEZIFIZIERT
Brakmann, RobinRobin.Brakmann (at) dlr.dehttps://orcid.org/0000-0003-3598-0742NICHT SPEZIFIZIERT
Datum:28 September 2023
Erschienen in:ASME Turbo Expo 2023: Turbomachinery Technical Conference and Exposition, GT 2023
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.1115/GT2023-103061
ISBN:978-0-7918-8701-1
Status:veröffentlicht
Stichwörter:Jet Engine; Turbine; Cooling; Optimization
Veranstaltungstitel:Turbo Expo 2023: Turbomachinery Technical Conference and Exposition
Veranstaltungsort:Boston, Massachusetts, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:26 Juni 2023
Veranstaltungsende:30 Juni 2023
Veranstalter :The American Society of Mechanical Engineers
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Umweltschonender Antrieb
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CP - Umweltschonender Antrieb
DLR - Teilgebiet (Projekt, Vorhaben):L - Komponenten und Emissionen, L - Triebwerkskonzepte und -integration
Standort: Göttingen
Institute & Einrichtungen:Institut für Antriebstechnik > Turbine
Hinterlegt von: Schöffler, Robin
Hinterlegt am:28 Nov 2023 13:22
Letzte Änderung:24 Apr 2024 20:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.