elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Reinforcement Learning for Tailored Development of Aerogels

Pandit, Prakul und Rege, Ameya Govind (2023) Reinforcement Learning for Tailored Development of Aerogels. GCMAC Summer School 2023, 2023-09-18 - 2023-09-22, Karlsruhe, Germany.

[img] PDF - Nur DLR-intern zugänglich
1MB

Kurzfassung

Ever since Kistler developed the first ‘aerogels’, silica aerogels have been the interest of the scientific community due to their exceptional thermal insulation and lightweight characteristics and suitability for diverse applications [1]. Depending on the nature of synthesis and the application, ranging from thermal insulation in high-temperature applications to their application in lithium sulphur batteries, several intrinsic material characteristics may influence the structure-property relationships of the final aerogel product. However, designing aerogels for specific requirements remains a complex task due to the intricate and nanostructured morphology of the material. Given the recent advancements in the areas of materials research and artificial intelligence, deep reinforcement learning (DRL) provides a solution to such optimisation problems for developing aerogels for achieving targeted properties. With the ability to learn and extract complex patterns and relationships, it provides a data-driven approach to understand and optimise these materials. As such, an offline DRL approach in combination with a property predictor (surrogate model) is presented to optimise computationally designed aerogel microstructures for diverse application. The surrogate models act as intelligent digital twins, eliminating the requirement for iterative computational modelling and the subsequent post-processing. These computational microstructures are modelled with aggregation algorithms mimicking the sol-gel chemistry [2] and gaussian random field-based algorithms [3] to optimise the mechanical and the flow properties of the aerogel microstructures. References [1] M. A. Aegerter, N. Leventis and M. M. Koebel, Aerogels handbook, Springer Science & Business Media, 2011 [2] R. Abdusalamov, C. Scherdel, M. Itskov, B. Milow, A.Rege, J. Phys. Chem. B 2021, 125, 1944–1950. [3] C.J. Gommes, A.P. Roberts Phys. Rev. E, 2008, 77, 041403

elib-URL des Eintrags:https://elib.dlr.de/197857/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Reinforcement Learning for Tailored Development of Aerogels
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Pandit, PrakulPrakul.Pandit (at) dlr.dehttps://orcid.org/0000-0002-1343-3046144803219
Rege, Ameya GovindAmeya.Rege (at) dlr.dehttps://orcid.org/0000-0001-9564-5482NICHT SPEZIFIZIERT
Datum:2023
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:reinforcement learning, lithium sulfur batteries, carbon aerogels, artificial learning
Veranstaltungstitel:GCMAC Summer School 2023
Veranstaltungsort:Karlsruhe, Germany
Veranstaltungsart:Workshop
Veranstaltungsbeginn:18 September 2023
Veranstaltungsende:22 September 2023
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D KIZ - Künstliche Intelligenz
DLR - Teilgebiet (Projekt, Vorhaben):D - ReBAR
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Werkstoff-Forschung > Aerogele und Aerogelverbundwerkstoffe
Hinterlegt von: Pandit, Prakul
Hinterlegt am:19 Okt 2023 10:18
Letzte Änderung:24 Apr 2024 20:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.