Dell Amore, Luca und Soledade Matos Amorim, Vinícius und Rizzoli, Paola (2024) Optimizing Φ-Net Using TanDEM-X Bistatic Data for High-Resolution DEM Generation. In: Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR. European Conference on Synthetic Aperture Radar (EUSAR), 2024-04-23 - 2024-04-26, Munich, Germany. ISSN 2197-4403.
![]() |
PDF
11MB |
Kurzfassung
Phi-Net is a deep residual learning architecture and is currently one of the most accurate state-of-the-art approaches for Synthetic Aperture Radar interferometric (InSAR) phase filtering and coherence estimation. The network has proven to outperform classical denoising strategies concerning the estimation of InSAR parameters and therefore is very suitable for the generation of high-resolution Digital Elevation Models (DEMs). However, some limitations are shown over critical areas characterized by low signal-to-noise ratio (SNR) or by geometric distortions, i.e. shadow and layover. There, Phi-Net wrongly reconstructs the InSAR phase and inserts artefacts, thus leading to an unreliable input for typical phase unwrapping algorithms. Moreover, being trained with synthetic data only, there is still potential for an optimization which is closely related to the patterns that can be found in real InSAR data. In this paper we propose a preliminary analysis which exploits TanDEM-X bistatic data in order to optimize and fine tune Phi-Net. In particular, we address the problem of removing artefacts in the filtered InSAR phase and improving the estimation performance, which would allow for the generation of a more accurate and reliable unwrapped phase and higher-precision DEMs.
elib-URL des Eintrags: | https://elib.dlr.de/197748/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Optimizing Φ-Net Using TanDEM-X Bistatic Data for High-Resolution DEM Generation | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | April 2024 | ||||||||||||||||
Erschienen in: | Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
ISSN: | 2197-4403 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | SAR, SAR Interferometry (InSAR), Phi-Net, InSAR phase denoising | ||||||||||||||||
Veranstaltungstitel: | European Conference on Synthetic Aperture Radar (EUSAR) | ||||||||||||||||
Veranstaltungsort: | Munich, Germany | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 23 April 2024 | ||||||||||||||||
Veranstaltungsende: | 26 April 2024 | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - AI4SAR | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme > Satelliten-SAR-Systeme | ||||||||||||||||
Hinterlegt von: | Dell Amore, Luca | ||||||||||||||||
Hinterlegt am: | 09 Okt 2023 08:47 | ||||||||||||||||
Letzte Änderung: | 04 Dez 2024 17:02 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags