Steinhoff, Leon und Koschlik, Ann-Kathrin und Arts, Emy und Soria Gomez, Maria und Raddatz, Florian und Kunz, Veit Dominik (2023) DEVELOPMENT OF AN ACOUSTIC FAULT DIAGNOSIS SYSTEM FOR UAV PROPELLER BLADES. Deutscher Luft- und Raumfahrtkongress 2023, 2023-09-19 - 2023-09-21, Stuttgart, Deutschland.
PDF
- Nur DLR-intern zugänglich
885kB |
Kurzfassung
With the rapid growth in demand for drones or unmanned aerial vehicles (UAVs), novel maintenance technologies are essential for ensuring automatic, safe, and reliable operations. This study proposes a fault detection system that utilizes the acoustic signature of UAV propeller blades for classifying their health state. By employing an acoustic camera with 112 microphones for spatial resolution of sound sources, datasets of acoustic images are generated in three differently reverberating environments for the third octave frequency bands of 6300 Hz, 8000 Hz, 10000 Hz and 12500 Hz. A convolutional neural network (CNN) is trained and evaluated with maximum F1-scores of 0.9962 and 0.9745 for two and three propeller health classes, respectively. Furthermore, we propose a second approach based on a linear classification (LC), which utilizes a rotating beamformer for comparison. This approach uses only two sound sources that are identified after the beamforming of a two-bladed propeller. In comparison, this algorithm detects propeller tip damages without applying a machine learning algorithm and reaches an F1-score of 0.9441.
elib-URL des Eintrags: | https://elib.dlr.de/197659/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||||||
Titel: | DEVELOPMENT OF AN ACOUSTIC FAULT DIAGNOSIS SYSTEM FOR UAV PROPELLER BLADES | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 17 September 2023 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
Status: | akzeptierter Beitrag | ||||||||||||||||||||||||||||
Stichwörter: | UAV Maintenance; Machine Condition Monitoring; Acoustic Diagnosis; Non-Destructive Testing; Machine Learning | ||||||||||||||||||||||||||||
Veranstaltungstitel: | Deutscher Luft- und Raumfahrtkongress 2023 | ||||||||||||||||||||||||||||
Veranstaltungsort: | Stuttgart, Deutschland | ||||||||||||||||||||||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 19 September 2023 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 21 September 2023 | ||||||||||||||||||||||||||||
Veranstalter : | DGLR | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||||||||||||||
Standort: | Hamburg | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Instandhaltung und Modifikation > Prozessoptimierung und Digitalisierung | ||||||||||||||||||||||||||||
Hinterlegt von: | Koschlik, Ann-Kathrin | ||||||||||||||||||||||||||||
Hinterlegt am: | 04 Okt 2023 08:06 | ||||||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 20:57 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags