Thirunavukkarasu, Arunachalam und Helms, Domenik (2023) Using Network Architecture Search for Optimizing Tensor Compression. In: Designing Modern Embedded Systems: Software, Hardware, and Applications, Seiten 139-150. Springer. 7th IFIP TC 10 International Embedded Systems Symposium, IESS 2022, 2022-11-03 - 2022-11-04, Lippstadt. doi: 10.1007/978-3-031-34214-1_12. ISBN 978-303134213-4. ISSN 1868-4238.
PDF
- Nur DLR-intern zugänglich
102kB |
Kurzfassung
In this work we propose to use Network Architecture Search (NAS) for controlling the per layer parameters of a Tensor Compression (TC) algorithm using Tucker decomposition in order to optimize a given convolutional neural network for its parameter count and thus inference performance on embedded systems. TC enables a quick generation of the next instance in the NAS process, avoiding the need for a time consuming full training after each step. We show that this approach is more eficient than conventional NAS and can outperform all TC heuristics reported so far. Nevertheless it is still a very time consuming process, finding a good solution in the vast search space of layer-wise TC. We show that, it is possible to reduce the parameter size upto 85% for the cost of 0.1- 1% of Top-1 accuracy on our vision processing benchmarks. Further, it is shown that the compressed model occupies just 20% of the original memory size which is required for storing the entire uncompressed model, with an increase in the inference speed of upto 2.5 times without much loss in the performance indicating potential gains for embedded systems.
elib-URL des Eintrags: | https://elib.dlr.de/196697/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||
Titel: | Using Network Architecture Search for Optimizing Tensor Compression | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 11 Juni 2023 | ||||||||||||
Erschienen in: | Designing Modern Embedded Systems: Software, Hardware, and Applications | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Nein | ||||||||||||
DOI: | 10.1007/978-3-031-34214-1_12 | ||||||||||||
Seitenbereich: | Seiten 139-150 | ||||||||||||
Herausgeber: |
| ||||||||||||
Verlag: | Springer | ||||||||||||
Name der Reihe: | IFIP Advances in Information and Communication Technology | ||||||||||||
ISSN: | 1868-4238 | ||||||||||||
ISBN: | 978-303134213-4 | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Tensor Compression · Embedded systems · Network Architecture Search · Tucker Decomposition · Convolutional Neural Network. | ||||||||||||
Veranstaltungstitel: | 7th IFIP TC 10 International Embedded Systems Symposium, IESS 2022 | ||||||||||||
Veranstaltungsort: | Lippstadt | ||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||
Veranstaltungsbeginn: | 3 November 2022 | ||||||||||||
Veranstaltungsende: | 4 November 2022 | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Verkehr | ||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC | ||||||||||||
Standort: | Oldenburg | ||||||||||||
Institute & Einrichtungen: | Institut für Systems Engineering für zukünftige Mobilität | ||||||||||||
Hinterlegt von: | Helms, Domenik | ||||||||||||
Hinterlegt am: | 31 Aug 2023 07:42 | ||||||||||||
Letzte Änderung: | 18 Jul 2024 15:30 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags