Mommert, Michael und Bauer, Christian und Wagner, Claus (2024) Temperature assimilation for convective flows by means of convolutional neural networks. In: Progress in Turbulence X 2024 Springer Proceedings in Physics, 404. Springer Cham. Seiten 319-325. doi: 10.1007/978-3-031-55924-2_43. ISBN 978-3-031-55924-2. ISSN 0930-8989.
![]() |
PDF
- Nur DLR-intern zugänglich
901kB |
Offizielle URL: https://link.springer.com/chapter/10.1007/978-3-031-55924-2_43
Kurzfassung
A convolutional encoder-decoder network trained on instantaneous velocity fields is used to assimilate corresponding temperature fields of convective flows. In particular, synthetic data of Rayleigh-Bénard convection in a cubic sample at Ra=10^8, Pr=0.7 and Ra=10^10, Pr=6.9 is studied and the shape and size of the windowed input and output of the network are varied to determine a favorable domain. Additionally, the amount of training data is also varied to determine it’s extrapolation potential. This approach proves to predict the temperature fields well for all parameter variations considered. Particularly good correlations between the predictions and the ground truth are achieved for horizontal planar domains and large amounts of training data.
elib-URL des Eintrags: | https://elib.dlr.de/196624/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Beitrag im Sammelband | ||||||||||||||||||||
Zusätzliche Informationen: | Print ISBN 978-3-031-55923-5 Online ISBN 978-3-031-55924-2 | ||||||||||||||||||||
Titel: | Temperature assimilation for convective flows by means of convolutional neural networks | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 6 August 2024 | ||||||||||||||||||||
Erschienen in: | Progress in Turbulence X 2024 | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Band: | 404 | ||||||||||||||||||||
DOI: | 10.1007/978-3-031-55924-2_43 | ||||||||||||||||||||
Seitenbereich: | Seiten 319-325 | ||||||||||||||||||||
Herausgeber: |
| ||||||||||||||||||||
Verlag: | Springer Cham | ||||||||||||||||||||
Name der Reihe: | Springer Proceedings in Physics | ||||||||||||||||||||
ISSN: | 0930-8989 | ||||||||||||||||||||
ISBN: | 978-3-031-55924-2 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | convection, assimilation, convolutional neural networks | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||||||
HGF - Programmthema: | Schienenverkehr | ||||||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||||||
DLR - Forschungsgebiet: | V SC Schienenverkehr | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - RoSto - Rolling Stock | ||||||||||||||||||||
Standort: | Göttingen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Bodengebundene Fahrzeuge | ||||||||||||||||||||
Hinterlegt von: | Mommert, Michael | ||||||||||||||||||||
Hinterlegt am: | 05 Nov 2024 13:53 | ||||||||||||||||||||
Letzte Änderung: | 06 Nov 2024 12:14 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags