elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Towards early response to desert locust swarming in eastern Africa by estimating timing of hatching

Landmann, Tobias und Agboka, Komi und Klein, Igor und Abdel-Rahman, Elfatih M. und Kimathi, Emily und Mudereri, Bester und Malenge, Benard und Mohamed, Mahgoub und Tonnang, Henri (2023) Towards early response to desert locust swarming in eastern Africa by estimating timing of hatching. Ecological Modelling, 484 (110476), Seiten 1-12. Elsevier. doi: 10.1016/j.ecolmodel.2023.110476. ISSN 0304-3800.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
6MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0304380023002065

Kurzfassung

Desert locust (Schistocerca gregaria) plagues threaten agricultural production, food security and the environment across Africa, the Middle East, and Southwest Asia. Control methods targeting adult desert locusts present significant challenges and financial costs. Recognizing this, we developed a ground-breaking fuzzy set Mamdani type inference model that provides an innovative solution for early warning alerts. The model aids in predicting the juvenile stages of locust development, thereby preventing wide-scale locust swarming and mitigating its extensive damages and socioeconomic costs. The novelty of our approach lies in our unique application of environmental variables relevant for locust breeding to estimate the timing and location of desert locust hatching. Additionally, we improved the algorithmic handling of these variables, with localized desert locust bands data used as a proxy for hatching timing with a temporal offset of 35 days. The model's boundary conditions were determined using a training area in Sudan, where comprehensive ground data was available. This rule set was subsequently applied to Turkana County in Kenya, a data-scarce region, demonstrating the model's applicability and success in different contexts. The model's accuracy, assessed by data from the Sudan training site, demonstrated a remarkable score of 82% for true predictions. Furthermore, the model correctly identified the months of highest hatching probabilities in Turkana during 2020, demonstrating its real-world effectiveness and practical value. A correlation analysis affirmed that hatching was associated with increases in chlorophyll levels and precipitation accumulations. Our study marks a significant advancement in predicting the timing of hatching using fuzzy logic in data-scarce environments. By operationalizing more targeted early responses to desert locust infestations, our model facilitates more effective locust control. This study stands as an important contribution to locust management strategies, with substantial implications for agricultural production and food security in affected regions.

elib-URL des Eintrags:https://elib.dlr.de/196540/
Dokumentart:Zeitschriftenbeitrag
Titel:Towards early response to desert locust swarming in eastern Africa by estimating timing of hatching
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Landmann, TobiasInternational Centre of Insect Physiology and Ecology, Nairobi, KenyaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Agboka, KomiInternational Centre of Insect Physiology and Ecology, Nairobi, KenyaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Klein, IgorIgor.Klein (at) dlr.dehttps://orcid.org/0000-0003-0113-8637NICHT SPEZIFIZIERT
Abdel-Rahman, Elfatih M.International Centre of Insect Physiology and Ecology, Nairobi, KenyaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kimathi, EmilyInternational Centre of Insect Physiology and Ecology, Nairobi, KenyaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mudereri, BesterInternational Centre of Insect Physiology and Ecology, Nairobi, KenyaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Malenge, BenardInternational Centre of Insect Physiology and Ecology, Nairobi, KenyaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Mohamed, MahgoubFaculty of Agricultural Studies, Sudan University of Science and Technology, Khartoum North, SudanNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Tonnang, HenriInternational Centre of Insect Physiology and Ecology, Nairobi, KenyaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:August 2023
Erschienen in:Ecological Modelling
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:484
DOI:10.1016/j.ecolmodel.2023.110476
Seitenbereich:Seiten 1-12
Verlag:Elsevier
Name der Reihe:Elsevier
ISSN:0304-3800
Status:veröffentlicht
Stichwörter:Migratory insect, pests, Locust hatching, Ecological modeling, Fuzzy logic, Africa
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum
Hinterlegt von: Klein, Igor
Hinterlegt am:18 Sep 2023 09:33
Letzte Änderung:19 Sep 2023 08:05

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.