elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep Learning for the Automatic Division of Building Constructions into Sections on Remote Sensing Images

Schuegraf, Philipp und Zorzi, Stefano und Fraundorfer, Friedrich und Bittner, Ksenia (2023) Deep Learning for the Automatic Division of Building Constructions into Sections on Remote Sensing Images. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing (16), Seiten 7186-7200. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2023.3296449. ISSN 1939-1404.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
27MB

Offizielle URL: https://ieeexplore.ieee.org/abstract/document/10185575

Kurzfassung

Urban areas predominantly consist of complex building structures, which are assembled of multiple building sections. From very high resolution remote sensing imagery, not only roof-tops but also the separation lines between them are visible. Since fully convolutional neural network (FCN)-based methods have become the primary choice in segmentation approaches, they have been extensively used for automatic building footprint extraction. But each of the previous works on building segmentation either lacks separation of building blocks into sections or does not produce sections of regular appearance. We propose a two-stage approach to overcome these limitations. The first step segments building and separation lines using an FCN model and the second step produces building instances by using a learning-free method. Our model receives a top-down image and a digital surface model (DSM) patch in two separate encoders. The encoder features are summed before the skip connections, which utilize the encoder features from the current and higher-resolution feature maps. We train our model with regularization losses for building shapes and separation lines on both satellite and aerial imagery. We test our model on a city that was not previously included in the training phase to show that it has the capacity to generalize across different geographical locations and architectural styles. Furthermore, we use our building section instance predictions to generate: 1) vectorized building maps and 2) a level-of-detail-1 DSM.

elib-URL des Eintrags:https://elib.dlr.de/196522/
Dokumentart:Zeitschriftenbeitrag
Titel:Deep Learning for the Automatic Division of Building Constructions into Sections on Remote Sensing Images
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schuegraf, PhilippPhilipp.Schuegraf (at) dlr.dehttps://orcid.org/0000-0003-0836-9040140865168
Zorzi, Stefanozorzi (at) icg.tugraz.atNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Fraundorfer, Friedrichfraundorfer (at) icg.tugraz.athttps://orcid.org/0000-0002-5805-8892NICHT SPEZIFIZIERT
Bittner, KseniaKsenia.Bittner (at) dlr.dehttps://orcid.org/0000-0002-4048-3583NICHT SPEZIFIZIERT
Datum:18 Juli 2023
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1109/JSTARS.2023.3296449
Seitenbereich:Seiten 7186-7200
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:AI4BuildingModelling, Convolutional neural networks, deep learning, semantic segmentation, supervised learning, urban areas
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D DAT - Daten
DLR - Teilgebiet (Projekt, Vorhaben):D - Digitaler Atlas 2.0, R - Optische Fernerkundung, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Schuegraf, Philipp
Hinterlegt am:21 Aug 2023 10:15
Letzte Änderung:19 Okt 2023 15:01

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.