Kulathilaka, M.J.S. und Saravanan, S. und Kumarasiri, H.D.H.P. und LOGEESHAN, V. und KUMARAWADU, S. und Rajakaruna Wanigasekara, Chathura (2023) Maximizing Efficiency in Commercial Power Systems with an Optimized Load Classification and Identification Method Using Deep Learning and Ensemble Techniques. In: 2023 IEEE World AI IoT Congress, AIIoT 2023. IEEE. 2023 IEEE World AI IoT Congress (AIIoT), 2023-06-07 - 2023-06-10, Seattle, WA, USA. doi: 10.1109/AIIoT58121.2023.10174492. ISBN 979-835033761-7.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10174492
Kurzfassung
Due to the continuous rise of energy demand and electricity costs, the need for a detailed metering option has become crucial. Non-intrusive load monitoring is such an approach that requires less hardware compared to the other load monitoring options, significantly improving consumer comfort. Due to this reason, researchers are encouraged to implement more advanced machine learning techniques capable of accurate load classification and identification; among them, most focus on residential applications due to fewer complications. However, commercial power systems present considerable challenges compared to residential power systems due to the greater diversity of loads and significant imbalances. In order to overcome these challenges, we introduce a novel neural network design that incorporates sequence-to-sequence, WaveNet, and Ensembling techniques to identify and classify single-phase and three-phase loads in commercial power systems. We tested our approach by identifying and classifying nine appliances - five single-phase and four three-phase - for three months, revealing a significant improvement in accuracy.
elib-URL des Eintrags: | https://elib.dlr.de/196228/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||||||||||
Titel: | Maximizing Efficiency in Commercial Power Systems with an Optimized Load Classification and Identification Method Using Deep Learning and Ensemble Techniques | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | Juli 2023 | ||||||||||||||||||||||||||||
Erschienen in: | 2023 IEEE World AI IoT Congress, AIIoT 2023 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
DOI: | 10.1109/AIIoT58121.2023.10174492 | ||||||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||||||
ISBN: | 979-835033761-7 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Non-Intrusive Load Monitoring, Load Identifi- cation and Classification, Neural Network, Sequence-to-Sequence Learning, WaveNet, Ensemble Learning | ||||||||||||||||||||||||||||
Veranstaltungstitel: | 2023 IEEE World AI IoT Congress (AIIoT) | ||||||||||||||||||||||||||||
Veranstaltungsort: | Seattle, WA, USA | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 7 Juni 2023 | ||||||||||||||||||||||||||||
Veranstaltungsende: | 10 Juni 2023 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||||||||||||||
Standort: | Bremerhaven | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz maritimer Infrastrukturen > Resilienz Maritimer Systeme | ||||||||||||||||||||||||||||
Hinterlegt von: | Rajakaruna Wanigasekara, Chathura | ||||||||||||||||||||||||||||
Hinterlegt am: | 26 Sep 2023 09:37 | ||||||||||||||||||||||||||||
Letzte Änderung: | 27 Mai 2024 12:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags