Witharama, W.M.N. und Bandara, K.M.D.P. und Azeez, M.I. und Adhikari, Muditha und Bandara, Kasun und LOGEESHAN, V. und Rajakaruna Wanigasekara, Chathura (2023) Optimal Scheduling of a Solar-Powered Microgrid Using ML-Based Solar and Load Forecasting. In: 2023 IEEE World AI IoT Congress, AIIoT 2023. IEEE. 2023 IEEE World AI IoT Congress (AIIoT), 2023-06-07 - 2023-06-10, Seattle, WA, USA. doi: 10.1109/AIIoT58121.2023.10174588. ISBN 979-835033761-7.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10174588
Kurzfassung
Microgrids, powered by distributed energy resources, are gaining traction as decentralized power systems. However, optimizing microgrid operation poses challenges due to intermittent renewable energy sources and dynamic load patterns. To tackle this, we propose an AI-driven day-ahead optimal scheduling approach for a grid-connected AC microgrid equipped with a solar panel and a battery energy storage system. Our approach leverages Genetic Algorithm, a popular optimization algorithm, to generate demand response strategies and optimal battery dispatch schedule. Additionally, we utilize LightGBM, a decision tree-based machine learning method, for solar and load forecasting prior to scheduling. Our objective is to minimize operational costs while ensuring the sustainability of the microgrid. Our simulation results showcase the effectiveness of our approach in reducing costs, with a 13.86% decrease in electricity costs observed in the University of Moratuwa microgrid under the tariff structure in Sri Lanka. Our proposed demand response optimizing strategies further contribute to cost reduction. Our approach showcases the power of AI in addressing the challenges of microgrid operation and optimization, with promising results in reducing costs and ensuring sustainability.
elib-URL des Eintrags: | https://elib.dlr.de/196227/ | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||||||||||||||||||||||||||
Titel: | Optimal Scheduling of a Solar-Powered Microgrid Using ML-Based Solar and Load Forecasting | ||||||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||||||
Datum: | Juli 2023 | ||||||||||||||||||||||||||||||||
Erschienen in: | 2023 IEEE World AI IoT Congress, AIIoT 2023 | ||||||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||||||
DOI: | 10.1109/AIIoT58121.2023.10174588 | ||||||||||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||||||||||
ISBN: | 979-835033761-7 | ||||||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||||||
Stichwörter: | Microgrid, Optimizing, Genetic Algorithm, Ma- chine Learning, Decision Trees | ||||||||||||||||||||||||||||||||
Veranstaltungstitel: | 2023 IEEE World AI IoT Congress (AIIoT) | ||||||||||||||||||||||||||||||||
Veranstaltungsort: | Seattle, WA, USA | ||||||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||||||
Veranstaltungsbeginn: | 7 Juni 2023 | ||||||||||||||||||||||||||||||||
Veranstaltungsende: | 10 Juni 2023 | ||||||||||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||||||||||
DLR - Schwerpunkt: | keine Zuordnung | ||||||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | keine Zuordnung | ||||||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | keine Zuordnung | ||||||||||||||||||||||||||||||||
Standort: | Bremerhaven | ||||||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für den Schutz maritimer Infrastrukturen > Resilienz Maritimer Systeme | ||||||||||||||||||||||||||||||||
Hinterlegt von: | Rajakaruna Wanigasekara, Chathura | ||||||||||||||||||||||||||||||||
Hinterlegt am: | 26 Sep 2023 09:36 | ||||||||||||||||||||||||||||||||
Letzte Änderung: | 27 Mai 2024 12:42 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags