Wieland, Marc und Martinis, Sandro und Kiefl, Ralph und Gstaiger, Veronika (2023) Semantic segmentation of water bodies in very high-resolution satellite and aerial images. Remote Sensing of Environment, 287, Seiten 1-14. Elsevier. doi: 10.1016/j.rse.2023.113452. ISSN 0034-4257.
PDF
- Nur DLR-intern zugänglich bis 6 Januar 2025
- Postprintversion (akzeptierte Manuskriptversion)
2MB |
Offizielle URL: https://www.sciencedirect.com/science/article/abs/pii/S0034425723000032
Kurzfassung
This study evaluates the performance of convolutional neural networks for semantic segmentation of water bodies in very high-resolution satellite and aerial images from multiple sensors with particular focus on flood emergency response applications. Different model architectures (U-Net and DeepLab-V3+) are combined with encoder backbones (MobileNet-V3, ResNet-50 and EfficientNet-B4) and tested for their ability to delineate inundated areas under varying environmental conditions and data availability scenarios. An unprecedented reference dataset of 1120 globally sampled images with quality checked binary water masks is introduced and used to train, validate and test the models for water body segmentation. Furthermore, independent test datasets are developed to test the generalization ability of the trained models across regions, sensors (IKONOS, GeoEye-1, WorldView-2, WorldView-3 and four different airborne camera systems) and tasks (normal water and flood water segmentation). Results indicate that across all tested scenarios a U-Net model with Mobilenet-V3 backbone pre-trained on ImageNet performs best. While using R-G-B image bands performs well, adding the near infrared band (if available) slightly improves prediction results. Similarly, adding slope information from an independent digital elevation model increases accuracies. Train-time augmentation and contrast enhancement could improve transferability across sensors and in particular between satellite and aerial images. Moreover, adding noisy training data from freely available online resources could further improve performance with minimal annotation effort.
elib-URL des Eintrags: | https://elib.dlr.de/196219/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | Semantic segmentation of water bodies in very high-resolution satellite and aerial images | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 13 Januar 2023 | ||||||||||||||||||||
Erschienen in: | Remote Sensing of Environment | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
Band: | 287 | ||||||||||||||||||||
DOI: | 10.1016/j.rse.2023.113452 | ||||||||||||||||||||
Seitenbereich: | Seiten 1-14 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 0034-4257 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Convolutional neural networks; Semantic segmentation; Water; Emergency response; Rapid mapping | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse | ||||||||||||||||||||
Hinterlegt von: | Wieland, Dr Marc | ||||||||||||||||||||
Hinterlegt am: | 31 Jul 2023 11:45 | ||||||||||||||||||||
Letzte Änderung: | 12 Mär 2024 15:16 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags