Stiller, Dorothee und Stark, Thomas und Strobl, Verena und Leupold, Maike und Wurm, Michael und Taubenböck, Hannes (2023) Efficiency of CNNs for Building Extraction: Comparative Analysis of Performance and Time. In: 2023 Joint Urban Remote Sensing Event, JURSE 2023, Seiten 1-4. IEEE. 2023 Joint Urban Remote Sensing Event (JURSE), 17.-19. Mai 2023, Heraklion, Greece. doi: 10.1109/JURSE57346.2023.10144140. ISBN 978-166549373-4. ISSN 2642-9535.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://ieeexplore.ieee.org/document/10144140
Kurzfassung
Openly available geodata of buildings are still incomplete or missing for many regions of the world. Convolutional neural networks (CNNs) have shown to be suitable for building extraction and thus, can help to overcome these shortcomings. In this study, we compare 16 encoder-decoder combinations for the task of building extraction from very high-resolution (VHR) aerial imagery in terms of performance, time needed for training and validation, and, efficiency. Therefore, we train and evaluate nine encoder models using a Feature Pyramid Network (FPN) decoder, and seven decoder models using a residual neural network (ResNet) encoder, more specifically ResNet50. The analysis is performed for two types of input data: RGB-NIR and RGB-NIR-nDSM. The results reveal that the majority of the investigated segmentation models show a high similarity in the area of performance, whereas the time needed for training and validation is exceptionally different. Both parameters, performance and time, are combined for an efficiency ranking, and the models are ranked accordingly. We found that a ResNet50 and FPN combination is the most suitable for our application. The presented results help to evaluate how each model combination should be rated in terms of efficiency for building extraction.
elib-URL des Eintrags: | https://elib.dlr.de/196035/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||||||||||
Titel: | Efficiency of CNNs for Building Extraction: Comparative Analysis of Performance and Time | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 2023 | ||||||||||||||||||||||||||||
Erschienen in: | 2023 Joint Urban Remote Sensing Event, JURSE 2023 | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
DOI: | 10.1109/JURSE57346.2023.10144140 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 1-4 | ||||||||||||||||||||||||||||
Verlag: | IEEE | ||||||||||||||||||||||||||||
ISSN: | 2642-9535 | ||||||||||||||||||||||||||||
ISBN: | 978-166549373-4 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | building extraction, convolutional neural network, encoder, decoder, comparative analysis, efficiency, aerial imagery, semantic segmentation | ||||||||||||||||||||||||||||
Veranstaltungstitel: | 2023 Joint Urban Remote Sensing Event (JURSE) | ||||||||||||||||||||||||||||
Veranstaltungsort: | Heraklion, Greece | ||||||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Fernerkundung u. Geoforschung, V - DATAMOST - Daten & Modelle zur Mobilitätstransform (alt) | ||||||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit | ||||||||||||||||||||||||||||
Hinterlegt von: | Stiller, Dorothee | ||||||||||||||||||||||||||||
Hinterlegt am: | 18 Sep 2023 08:50 | ||||||||||||||||||||||||||||
Letzte Änderung: | 19 Nov 2024 13:34 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags